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UNIT I : Systems of identical particles

Indistinguishability of identical particles — Symmetric and anti Symmetric
wavefunction — Exchange operator — Distinguishability of identical particles —
Bosons and Fermions — Pauli's Exclusion principles — Collision of identical
particles — Ensemble of identical particle systems— Density operator — Density
matrix — Properties — Symmetric and Anti symmetric wave function of hydrogen

molecule. .
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UNIT -1

1.1 INDISTINGUISHABILITY OF IDENTICAL PARTICLES

MECHANICS is the science that deals with

» study of motion of a system

» cause of motion of a system.

It describes the average properties of the molecules, atoms, or elementary particles in

random motion in a system of many such particles

It relates these properties to the thermodynamic and other macroscopic properties of the

system.

CLASSIFICATION OF MECHANICS

|

L

|

Jl

CLASSICAL MECHANICS

Identical Particles

|

Jl

QUANTUM MECHANICS

RELATIVISTIC MECHANICS

Identical Particles means the particle which cannot be distinguished by means of any

inherent (intrinsic) property.

There are many systems in nature that are made of several particles of the same species.

All these particles have the same mass, charge, and spin.

For instance the electrons in an atom are identical particles.

An electron is not identical to a proton or to a positron; etc.

If a system consists of two or more identical particles there should be no change in its

properties. (or) no change in its evolution if the roles of any two particles are exchanged.
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There are two general categories of particles.
1. Classical particles which are identical and distinguishable

2. Quantum particles which are identical and indistinguishable.

Classical mechanics

i.  In Classical mechanics the existence and the physical properties of the identical particles
can be sharply defined and followed during the course of an experiment.
Ii.  we can always follow the trajectory of each individual particle, i.e. their time evolution in
space.
iili.  The trajectories identify each particle in classical mechanics, making identical particles
distinguishable.
iv.  Hence the molecules (classical particles) are distinguishable in classical mechanics

Quantum mechanics

i.  In Quantum mechanics, a particle can be described by a wave packet of finite size and
spread over the volume.
ii.  The existence and physical properties of the identical particles cannot be defined and
track during the course of experiment.
iii.  According to quantum theory, the particles do not possess definite positions during the
periods between measurements.
iv. Instead, they are governed by wave functions that give the probability of finding a
particle at each position.
v.  Astime passes, the wavefunctions tend to spread out and overlap.
vi.  Once this happens, it becomes impossible to determine, in a subsequent measurement,
which of the particle positions correspond to those measured earlier.
vii.  In quantum mechanics the concept of trajectory does not exist and identical particles are
indistinguishable
viii.  Hence the indentical particles cannot be distinguished by quantum mechanics

cannot be distinguished. The particles are then said to be indistinguishable.


https://en.wikipedia.org/wiki/Wavefunction
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Physical Meaning of Identity in Quantum Mechanics

= |dentical particles are those particles in a system for which the system remains unaltered

by interchanging the particles.

= As each particle is described by a wave packet, these particles can be distinguished from

one another, only if their wavepackets do not overlap.

= According to spin considerations, the particles can be distinguished from one another if

they have different spin components.

= The component of spin along some particular axis remain unchanged during elastic

collision.

REVIEW - Distinguishing between particles

Two particles having the same physical attributes are equivalent.
They behave the same way if subjected to the same treatment

CM: Equivalent particles are distinguishable since one can keep track of each particle all

the time.

QM: Equivalent particles are indistinguishable since one cannot keep track of each

particle all the time due to the uncertainty principle.

1.2 SYMMETRIC AND ANTI SYMMETRIC WAVE FUNCTIONS:

The Schroedinger egn for n identical particles is written as

]
H(12,.m)¥(12, .0, 0) = tho W(12, ) = = = —1

where each of the numbers represent the position and spin of a particle (say i)
In equation 1 the Hamiltonian H is symmetrical with respect to identity of particles. So they can

be substituted for each other without changing (H) or any other observable.

There are two kinds of solutions of wave function ¥ of egn 1.
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1. Symmetric wave equation (¥s)
2. Anti Symmetric wave equation (¥,)

Symmetric wave equation (¥y)

A wave function is symmetric if the interchange of any pair of particles leave the wave
function remains unchanged.

Anti Symmetric wave equation (¥,)

A wave function is symmetric if the interchange of any pair of particles among its
arguments changes the sign of the wave function.

Note:

1. The symmetry character of a wave function does not change with time.
2. If W, isantisymmetric wave function at any time t, then H ¥4 is antisymmetric.

o . .
3. So 6_tA also anti symmetric.

1.2.1 CONSTRUCTION OF SYMMETRIC AND ANTI SYMMETRIC WAVE
FUNCTION FROM EXCHANGE DEGENERACY

In case, where the Hamiltonian does not depend upon time, the solution of stationary state can be

written as,
Y(1,2,..n) = ¢p(1,2,.....n) — — — =2
So eqgn 1 becomes

H12,.0)¢(1,2, ....n) = E ¢(1,2,.....0) — — — =3

There are n! solutions for this equation 3 by means of permutations of its arguments belonging to
same eigen value E.

Hence this system is degenerate. This type of degeneracy is called Exchange Degeneracy.

Consider a two particle wave function, the time independent schroedinger’s eqn is
H(1,2)¢(1,2) =E ¢p(1,2) — — — —4

There are 2! (=2) solutions for this eqn 4.

Y(1,2)and ¥(2,1)
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These solutions correspond to single energy state E.

The symmetric wave function is written as

Y= 9(1,2)+ ¥(2,1)

The anti symmetric wave function is written as

Y,=%(1,2)- ¥(2,1)

Similarly for a 3 particle system there are 3! (=6) solutions

They are ¥(1,2,3),%(2,3,1),%(3,2,1),%(1,3,2),¥(2,1,3),¥(3,1,2)

The wave functions arising from even no of interchanges of the pair of particles are
¥(1,2,3),¥(2,3,1),¥(3,2,1)

The wave functions arising from odd no of interchanges of the pair of particles are
¥(1,3,2),¥(2,1,3),¥(3,1,2)

So the symmetric wave function can be written as

w.=v(1,2,3)+ %231+ ¥3,21)+¥(1,32)+¥%2,1,3)+¥3,1,2)
And the anti symmetric wave function can be written as

Y, = ¥(1,2,3)+ ¥(2,3,1)+ ¥3,2,1) - ¥(1,3,2) - ¥(2,1,3) - ¥(3,1,2)

1.3 EXCHANGE OPERATOR

1.3.1 Define Particle exchange operator and show that its eigen values are £1.

The particle exchange operator P12 is defined by equation
P12 y (r181: r252) =y (1282:1181) -=------- 1.

The effect of this operator is to interchange the subscripts of the spin and position
variables of the wave function for particles 1 and 2.

If two particles are identical, then the Hamiltonian must be symmetric with respect to
position and spin of identical particles.

Hence energy of the system will remain same if we relabel the particles.
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Eigen Values of Particle exchange operator:
Eigen value equation of particle exchange operator is
Py (1,2)=awy(l,2)-----mmmmmmmmmmmme- 2.
Where a is the Eigen value of operator P12 in state y (1, 2)
Operating again
Phw(1,2) =P12 P2y (1,2) =Pz ay (1, 2)
=aPry(l1,2)
=afay(l,2)]
PL v (1,2) =02y (1, 2) ~=mmmmmmmmmmm e 3.

From the definition of particle exchange operator

Py (1,2)=y (2, 1) ----m-mmmmmmmmee- 4.
Operating again
P w(1,2) =P12 P2y (1,2) =Py (2, 1)
Py (12) =y (1,2) omemmeemmeeeeees 5.
Comparing 3 & 5 we get,
o> =1 ora==1
i.e., the eigen values of particle exchange operator are * 1 just like parity

operator.

1.3.2 Show that the eigen functions of particle exchange operator are symmetric and

antisymmetric.
Eigen function of particle exchange operator corresponding to eigen value +1 is symmetric and

Eigen function of particle exchange operator corresponding to eigen value — 1 is

Antisymmetric.

i.e.,, P ys=ys and P2 ya=-ya
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This may be explained as follows.
vs =y (L,2)+y (2,1
P2 ys = P12 [y (1,2) +y (2, 1)]
=y (2, D)+ (1,2)
P12 ys= wys
Also va-y(1,2)-y (2, 1)
Pr2ya=Pu2[y(1,2)-y (2, 1]
=y (2,1)-v(1,2)
=-[lv(1,2)-y (2, 1]
P12 wa= - ya
1.3. 3. Particle exchange operator commutes with Hamiltonian.
From the definition of particle exchange operator
Poy(1,2)=y (2, 1)
PoH(1,2)y(1,2)=H(@2, D)y (@2, 1)
Since Hamiltonian H is symmetric H (1, 2) = H (2, 1)
PH(1,2)y(1,2)=H(1,2) P2y (1,2)
[P2H(L,2)-H(1,2) P2y (1,2)=0

As y (1, 2) is non zero

PoH(1,2)-H(1,2)P2=0
[Plz, H] =0

Thus the Particle exchange operator commutes with Hamiltonian
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1. 4. Discuss about the Distinguishability of identical particles.

e Two identical particles can be distinguished when they are in different orbits. i.e., when
they do not overlap.

e For example, two electrons in an atom are well — differentiated when two electrons are in
different orbits.

e The electrons of the same orbit cannot be distinguished.

e In terms of quantum mechanical concept, two electrons are distinguished when their
wave functions do not overlap.

e When two wave functions do not overlap, the overlap terms W (1,2)+
Y (2,1)and ¥ (1,2) — ¥ (2,1) are zero.

e If the wave functions of these two particles overlap, we can’t detect a particle which one
is it?

e Quantum mechanics can only tell us the probability of finding a particle in a given
region.

e |t further means that,

o [P+ IPERDIP= Y12 £¥ (21}

The two identical particles can be distinguished from each other when the sum of the
probabilities of the individual wave functions in two states is equal to the probability
derived by the symmetrised wave functions.

e, [P (L2)2+ Y EDI2= {¥(1,2) £ ¥ (2,1)}]?
= [P (1,2)* + ¥ (2, D% £ 2Re[¥ (1,2)¥(2,1)] - 1

This is possible when the overlap terms W (1,2) and WY (2,1) is zero or
2Re[¥ (1,2)¥(2,1)] =0.

In this way when the co - ordinates (space and spin) of two particles are not the same
between exchange degenerate functions, the interference term 2Re[W (1,2)W(2,1)] becomes

zero and particle co-ordinates do not overlap.

10
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1. 5. What do you mean by Bosons and Fermions?

Pauli demonstrated that quantum particles are classified as

1. Bosons
2. Fermions
Bosons:
1. Systems of identical particles with integer spins (S = 0,1,2,----) are described by

symmetric wave functions.

2. They do not follow Pauli’s exclusion principle
3. Such particles obey Bose - Einstein Statistics
4. They are called Bosons.
5. Examples: m — mesons, photons
Fermions:
1. Systems of identical particles with half - odd integer spins

SANE

3 : : : :
S ...) are described by antisymmetric wave functions

They follow Pauli’s exclusion principle.
Such particles obey Fermi - Dirac Statistics.
They are called Fermions.

Examples : electron, proton, neutrons

1
(s=1,

11
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1.6. Write short notes on Pauli’s Exclusion Principle.

Pauli’s Exclusion Principle:

Pauli’s exclusion principle states that “No two particles obeying Fermi Dirac Statistics can

exist in the same quantum state”.

1. Consider two particle system which contains electrons in indistinguishable positions.
2. Electrons are % spin particles and obey Fermi Dirac Statistics.

3. If they occupy the same position in space and have the same z — component of spin,
then the eigen function of exchange operator will be

P12 ya (riS1: r282) N (P R ) — 1

= ya (ris1: r252)
_ngf = 12
=0 |f{ s = 5, T 2

The non existence of the wave function under these conditions implies that

There is zero probability that the particle will occupy the same point in space and have
identical spin orientations.

Eqgn 2 is called Pauli exclusion principle which states that
“No two particles obeying Fermi Dirac Statistics can exist in the same quantum state”.

(This means that if there are two electrons in one atomic orbit, they cannot have the same spin

orientations. Their spins have to be oppositely directed.)

12
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1.6.1. What is Pauli’s theory? Show that antisymmetric wave function for 2 electrons
would vanish if both occupy the same position with identical spin.
Or) Show that the antisymmetric wave function obeys Pauli’s exclusion principle.

(a) Pauli’ s theory:
“No two particles obeying Fermi Dirac Statistics can exist in the same quantum state”.

(This means that if there are two electrons in one atomic orbit, they cannot have the same spin

orientations. Their spins have to be oppositely directed.)

(b) Show that antisymmetric wave function for 2 electrons would vanish if both occupy

the same position with identical spin.

Consider a system of non interacting indistinguishable particles.
The Hamiltonian of such a system can be written as
Ho (1,2,....n) =Ho’(1) + H’(2) + ....... + Ho’(n) ------------------ 1

The approximate Energy - Eigen function will be a simple product of one particle eigen
functions. ¢

If (1), dp(2), ..o oo oo ... g (n) are the n — one particle eigen functions, then

E=Es+Ep+........... E k B e e 3

Hence, comparing 1,2 & 3
Ho’(1) q)a(l) = Ea (I)a(l)
Ho’(2) §4(2) =Eb dp(2)  eftC., (--mmnn-mmmmmemmemmmmmmneee 4.

Since the particles are indistinguishable, our assumption that ¢, is occupied by particle 1
and ¢, is occupied by particle 2 is incorrect.

Under exchange of two particles, to distinguish them, we have to take probability distribution.
~ The possible eigen functions are

v (1,2) = da(1) ¢5(2) and

v2,D=0,2) dp(1) [ e 5.

13
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The symmetric and antisymmetric combinations are

Us = §a(D) §p(2) + §a(@) (1) wrrommmrerremmeeenreee 6.
WA = §a(1) p(2) - $a() hp(1)  wrrommmreerremmeere s 7.

da (1) Pge(2)
dp(1)  dp(2)

If both the particles are put in the same state say ¢, then,

s = $a(1) §a(2) + da(2) (1)

s =2¢g(1) pg(2) | -mmrmememmemememomemeenen 9. and
YA = $a(1) §a(2) - §a(2) da(1)
wa =0 | e 10.

Eqgn 10 shows that the antisymmetric wave function vanishes, when two identical particles have
the same set of co — ordintates.

It concludes that two identical fermions cannot occupy the same state.

1.6.2 Explain Pauli’s exclusion principle using slater’s determinant. (optional)

The antisymmetric wave function can be expressed as determinant of the ¢'s known as slater’s
determinant.

q)a(l) (I)a(Z) q)a(n)

\|IA(1.2.....1’1)=\/% ¢b5(1) q)bs(z) ¢b§(”) ............. 1
dr (1) (@) - dr(n)

The factor \/iﬁ is called normalization constant and the determinant is called Slater’s

determinant.
If two or more ¢'s are same (i.e.,) ¢p,(1) = b, (1), the determinant will vanish.

= The antisymmetric wave function can not be constructed by the interchange of any pair
of particles.

Hence Pauli’s exclusion principle states that “no two particles described by antisymmetric

wave functions (or obeying Fermi Dirac Statistics) can exist in the same quantum state.”

14
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1.8 Write short notes on density operator and density matrix?

Consider a system described by non negative probabilities.
Let a classical state is represented by the co-ordinates qi, J2, ---- 0,
momentum p;, pz,----------- ps at any instant of time (t).

A statistical state can be described by a non negative density function

f (ql; q2s -t qf’ pl; p21 ___________ pf,y t )-
Then, the probability of finding the system at time t is
P (dgy ---------- day, dpy ------------ dpr)

The quantum analogue of the classical density function is known as
the density operator and its representation in the matrix form is known as
the density matrix.

Consider an ensemble, consisting of N systems of identical
particles in the normalized state g : where o = 1,2,3 ----N.

The expectation value of an observable f is given by
<f>=fyifogdg—————————— 1
f is an operator associated with observable f.

If ¢, ‘s represent the orthonormal eigen function’s, then a pure
state o may be represented by the coefficients of expansion of g into

eigen vectors ¢,,. 1.e.,

Yo =20Chppp ——f—————————— 2
W= ) Cn)y ———————————- 3

So that equation (1) takes the form

22
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<f>= ) ol [ b0 f bnda

< f >= ZmZnC:n Cn (mlfln) __________ 4
If the state is not specified completely, it may be represented by a
superposition of a number of pure states \V(“) with statistical weight p (@),

So the mean value of f for the incoherent superposition is given by the

grand (or ensemble) average given by

(F)= ) p@<f>=>p@ YN (o (mifin)

a a

(F) = EmZn(mIfIn) Top(®@ Cpy Cp <mmememememenes 5
Where P (@) represents the probability of finding the system in the

state|la >, where a measurement is made at random on the system.

Letus write, Yqp® CpCpy =P, -=mmmmmmmmmmme 6

mn

(mlfn) = frp----m--mmr-mmmmemm- 7

Hence the equation 5 takes the form

(f) = XmXn fmnpmn """""""" 8
(f) = Zmn(pf)mn
(f) = Trace (pf)------------ 9

Where Trace stands for the sum of the diagonal elements of the matrix (pf).
It is convenient to regard the density matrix as defined by equation 9 and

then by equation 6.
23
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1.8.1 Limitations on density matrix

1. The condition that the expectation value of f is real for every Hermitian

operator f, requires that p must also be hermitian.
.I_

Pmn = Pmn

. The condition that the unit operator | has the expectation value 1, require

that Trace (pf) = Trace (pl) = Y Pmn = 1 - 1

. The condition that every operator with negative eigen values has a non —

negative mean value, requires that p must be definitely positive.

This means D,y = 0 ===mmmmmmmmmem 2

. The Hermitian matrix p by means of unitary transformations may be

reduced to diagonal form

Pi%jjr = Z z imPmnUnjr

. The conditions given by 1 and 2 require that

[Trace(p)?]

[Trace(p)?] = ZZ Pmal® <

This limits the value of every single element of the density matrix.

24
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1.9 Construct symmetric and antisymmetric wave functions of a hydrogen
molecule.

When two H atoms meet, a molecule is not always formed.
e The two atoms repel each other if the spins of the two electrons are parallel

(M)
e The two atoms attract each other if the spins of the two electrons are anti
parallel ( )
Consider a system consists of two hydrogen nuclei ‘a’ and ‘b’, and two electrons

whose coordinates are denoted by symbols 1, 2.
Let rq, is the distance between the two electrons.

The Schrodinger equation of hydrogen molecule is given as

2
VA VR + R E-V -V — = | W =0 )
h T12
Y
Suppose, neglecting the spinning of electrons, the term r_ may be neglected.
12
The total energy of the two electrons be E=Ea + E p -------------- 2

The solution of equation 1 is given as

Y=Y (DY, (2) ------------ 3

However the two electrons are indistinguishable from each other, we can expect
the solution of equation 1 as

Y=Y (2)¥,(1) - 4

The solution (4) also belongs to the energy E=Ea+ E »
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Consequently, for two electron system we have two wave functions belonging

to the same energy. This is called degeneracy.

Combining the two solutions 3 & 4, we can build up more orbital wave functions.
Y. =9, (D¥,2)+ ¥,2Q¥,(1) ----------- 5 (Adding all wave functions)

Y. =9 (D¥,2)—- ¥ 2)¥,(1) ---—----mm- 6 (subtracting all wave functions)
Equations 3, 4 and 5 are symmetrical orbital wave functions and equation 6 is

anti symmetrical orbital wave functions.
: . _ 1
If we consider spin, we know that each electron has spin S; = S; = > The two

spins then combine to give a resultant spin for the total system.
e The spins of same direction (1T) produces the resultant spinas S = 1.
e The spins of opposite direction ( Tl) produces the resultant spinas S=0
For two electrons there will be two positive spin functions say,
a (1) and a (2) and two negative spin functions g(1)and £ (2).
Ultimately for two electrons system we have four spin functions. The total spin

wave function is the product of these spins functions.

Two electron system Electron 1 Electron 2
a (1) a(2) 7 7
B(1) B(2) l l
a (1) B(2) 7 !

a (2) B(1) ! T

Each a describes the spin +% and g describes the spin - %
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Since the two electrons are identical we can write the linear combination of the

spin wave functions as

Sy = @ (1) B@) + @ (2) B(1) wwormmmrreeeeees 7
S_=a (@) — a@PA) oo 8

Hence the four spin functions will be
1. a(l)a(2)
2. p(1) p(2)
3. a(1)B(2)+ a(2) p(1)
4. a(1)B(2) — a(2) B(1)

The complete wave function of an electron is the product of the orbital wave
function multiplied by one of the spin functions.

According to Pauli Exclusion Principle only two products will be allowed. (i.e.,)

L [Ya(D¥p(2) + Y (D¥,(D] x [a (1) B(2) — a (2) f(1)] ---------- 9
a(1l) a(2)
2. [Pa(D¥,(2) - ¥ (2)¥Pp(D] x pBE2) |- 10.

a (1) B(2) + a(2) p(1)

e Hence the total wave function of two electrons system is always anti
symmetrical.

e The symmetric orbital wave function is always associated with anti
symmetric spin wave function.

e The anti symmetric orbital wave function is always associated with

symmetric spin wave function.
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Symmetry of Orbital Wave — functions and Spin
Orbital Spin Total S
Y (D¥p(2) + ¥ (2)¥p(1) | a (1) B(2) — a (2) B(1) | 0 (Singlet)

a (1) a(2)
V(¥ (2) — ¥ (2)¥,(1) B(B(2) 1 (Triplet)
a (1) B2)+ a(2)p)
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To define the cross-section consider o typical experiment in which a target is struck by a beam of

mono-energetic  particles and the scattered particles are

fonn

I

counted with the aid of a detector (fig, 11.2). Let J bne the v

magnitude of the incident flux ie. the number of incident p- il
AREA

particles CTOSSing per unit time a unit surface area placed -
perpendicular to the direction of incident beam and at rest )
respect to the target. If p is the number of particles per unit Fig. 11.3
volume in the incident beam and v is the velocity of the incident o
particles, then

J=pv

If p is small (under the conditions of the experiment) that the
mutual interaction of the incident particles can be neglected, then  ORIGINAL
they undergo their collisions independently of each other. If nis the DIRECTION
number of particles scattered per unit time into a solid angle dw
located in the direction (6, ¢) (polar coordinates), then n is directly
proportional to the incident current i.e. ' Fig. 11.4
' necJdw
or n=ZX(wJdo
where I (0) is a constant of proportionality which has dimension of surface area and is characteristic
parameter of the collision of particle with target. It is known as scattering cross-section of the particle and
the target in the direction ® (6, ¢). /

Differential Scattering Cross-section : Let us now consider the target to be made up of a large
mumber N of atomic or nuclear scattering centres and the distance§ betweqn these atoms or nuclei are
sufficiently large with respect to the wavelength of the incident particles as is observed in most practical

cases. Then each scattering centre acts as it were alone. Moreover, if the target is sufﬁcietntly.thin,‘so that
i irectly proportional to N also i.e. n e N ; so in this case

N
SCATTERER

one may neglect multiple scattering; then nis d

n«<NJdo
= o(w)NJdw _
. : ionality, has the dimensions of surface area and is called the
Again ¢ (), the constant of proportionality in the direction’ @ (6, ¢) or briefly the

Scattering cross-section of the particle by the scattering centre 1

differentiq| scattering cross-section.
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Total Scattering Cross-section : The total number of particles scattered in unit time is obtaineq by

mtegratmg n over all angles. It is equal to
Nutal = J 0 () NJdw = NJ Gyl

where Crotal = ,[ 0 (w) dw

is the total scattering cross section.
In the cases of nuclear physics the scatterting centres have linear dimensions of the order of 10

-12 - . : ' .
10 "“ cm. and the cross-sections are usually measured in barns or millibarns where
2

1 barn = 10~ * cm
- -21 2 '
and 1 'millibarn = 10 ™ ¢m
we have assumed explicitly that the only possible collisions are elastic collisions i.e. where there is ng
energy transfer to the internal degrees of freedom of the scatterer. We shall confine ourselves to this type of

collision for the moment. Moreover rather than treating the scatterer atom or nucleus in all its complexity.
We shall represent by static potential V (r) depending upon coordinate r of the particle. ;

11-4. LABORATORY AND CENTRE OF MASS REFERENCE SYSTEMS

The scattering of particles can be visualised in two kinds of coordinates
1. Laboratory frame or system (L-system) : It is that co-ordinate system in which the bombarded

particle (or target) is initially at rest.
2. Centre of mass co-ordinate system (C-system) : It is .
that coordinate system in which the centre of mass of two c IL’-CENTRE OF MEASS
colliding particles is at rest (initially and always). m, m,
It is easy to calculate the result of collision experiment in Fio 115
ig. 11.

the centre of mass system than the laboratory system, since
there are three degrees of freedom in centre of mass system (C-system) as compared to six degrees of

freedom in laboratory system (L-system). Generally calculations are made in C system and observations are
made in L-system. In C-system the reduced mass of two particles of masses m| and m; is

mp mp |
mi+nmp ‘

So p must remain at rest before and after collision in C system.

Relation between Angles in L-system and C-system
The relation between the angles in laboratory system (L-system) and C-system can be tound by

translating the L-system in the direction of the incident particle with sufficient speed to bring the centre of
mass to rest.
Let a particle of mass m; and initial velocity v strike a relatively heavier particle of mass m; at rest n

the L-system [Fig. 11.6 (2)].
As particle of mass m| moves towards m, the centre of mass at the time of collision moves to the rlght

with a velocity V’ determined by the conservation of linear momentum.
mV = (m+my)V’
mv_ | A1)

.mp+m

’ —

Thus in C-system, the particle approaches the centre of mass with speeds.
' V”=({V-VYand V"
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Total Scattering Cross-section : The total number of particles scattered in unit time is obtaineq by
integrating n over all angles. It is equal to
. " Neotal = J o (W) NJdw = NJ Gyl
where Ctotal = .[ o (w) do

is the total scattering cross section.
_ , . ; - - 13
In the cases of nuclear physics the scatterting centres have linear dimensions of the order of 10 to

-1 . > .

10712 cm. and the cross-sections are usually measured in barns or millibarns where
" o4 2
1 barn = 10 ~ cm
Gand — 27

and 1 millibarn = 10 © ¢m ‘
we have assumed explicitly that the only possible collisions are elastic collisions i.e. where there is
energy transfer to the internal degrees of freedom of the scatterer. We shall confine ou_rselvc; to this type of
collision for the moment. Moreover rather than treating the scatterer atom or nucl;us in all its complexity,
We shall represent by static potential V (r) depending upon coordinate r of the particle. .

11-4. LABORATORY AND CENTRE OF MASS REFERENCE SYSTEMS

2

The scattering of particles can be visualised in two kinds of coordinates :
1. Laboratory frame or system (L-system) : It is that co-ordinate system in which the bombardeg

particle (or target) is initially at rest.

2. Centre of mass co-ordinate system (C-system) : It is CENTRE OF
that coordinate system in which the centre of mass of two i 44 MASs
colliding particles is at rest (initially and always). m, ‘en)‘z

It is easy to calculate the result of collision experiment in o

ig. 11.

the centre of mass system than the laboratory system, since
there are three degrees of freedom in centre of mass system (C-system) as compared to six degrees of

freedom in laboratory system (L-system). Generally calculations are made in C system and observations are
made in L-system. In C-system the reduced mass of two particles of masses nz; and m; is

mymp

mp+mp
So W must remain at rest before and after collision in C system.

Relation between Angles in L-system and C-system
The relation between the angles in laboratory system (L-system) and C-system can be found by
translating the L-system in the direction of the incident particle with sufficient speed to bring the centre of

mass to rest.
Let a particle of mass m and initial velocity v strike a relatively heavier particle of mass m; at rest in

the L-system [Fig. 11.6 (a)]. .
As particle of mass m; moves towards m;, the centre of mass at the time of collision moves to the right

with a velocity ¥ determined by the conservation of linear momentum.
mV = (m+myV’

m,V
_ (1)

vV’ = .
mp+mp

Thus in C-system, the particle approaches the centre of mass with speeds.
V”=({V-VYand V',
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Fig. 11.6 (a) Laboratory co-ordinate syst2min which the t
(b) Centre of mass co-ordinate system in which
(c) Vector addition velocity of centre of mass L-

(V) to give velocity observed in lahoratory system (V14

” ' mV
J”? = V=V =V -
my+ma
- m2V
or —
. my +m
If the collision is clastic, the speed will remain
same after collision. Now the vector addition of
velocity V” of the observed particle in C-system and %""’" """"
velocity V' of the centre of mass in L-system gives
the velocity V) of the observed particle in the
L-system. :
Therefore v’/ +V” cosBc = V108 oL
v sin ec = Vl sin BL
As collision is symmetric in ¢-co-ordinate; then
oL = dc
N V" sinO¢
Hence from (2) tan v = vn coS 9C+ v ’
sin ec

= CosOc+V'/V”
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rget particle of mass is initially at rest.
the centre of mass is intially and always at rest.
system (V') to velocity of observed particle in C-system

y+if V" < V81 cannot exceed the angle sin™ ' (V'/V). .
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In the C.M. System it ig
| LA P
Tec = =
© om T um, T
In laboratory frame the total momentur of the system is q
v=—9 .
: | — my+my
The relation between the magnitydes of the momenta in the two frames is
myq
P=q-—mlv= q—ml[ q )=
o my + my my +my
After squaring, we get
2 my x.
P = ( mi+my Jz 17
oy s 2 !
On substituting p~ = 2u Tcand q2 = 2m) Ty we have :
- 2)
Tr = T .
c mp+my 2

11.5. STATIONARY SCATTERING WAVE : SCATTERING AMPLITUDE

In wave mechanics, an incident beam of particles is represented by a plane wave in incident channel, ’
Let us consider the scattering of P

article of mass m by a central potential V (r) such that V (r) tends to zero
more rapidly than 1/r as r — oo, '

Let E be the energy and p = hk the initial momentum of the particle where k is the wave-vector. The
Scroedinger equation for the centra] potential V (r) is '

2
('g_mvz""('))w(r) = Ey (r) K1)

INCIDENT BEAM

SPHERICAL
RADIAL
WAVE

Fig. 11.9

'- The wave-function y; may be written as a function of 8; ¢ and radial distance r between the two
particles, i.e.

“l’lk = “l’k (r’ e) ¢) \\

The scattering is determined by the asymptotic form of y (r, 8, 9) in the region where V = 0, when

the colliding particles are far apart (or r — ). We want to represent such that it contains two parts, one

representing an incident wave and the other representing a scattered radially outgoing wave i.e.
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i kr
i e
v (r0,0) = Lim ¢ " +f(@) =~ )

Let us assume that one and only one solution of this type exists for each value of k V}’elshall call thig
solution, the stationary scattering wave-vector k. The two terms of the asymptotic form are easjj,

interpreted if we remember the definition of current density vector

J= E?n;(w*Vw -y Vyh) | +(3)

The plane wave term ¢' ** represents a wave of unit density and of current density e Retaining only

| f) |
r2

the lowest order in 7, the term f(-—w)eikr represents a wave of density and of current dengipy
: " .

2
| f(|“hk . ;
oy directed along the direction @ towards increasing r (outgoing-wave). In fact, since the effect

2
r

of the potential V(r) can be neglected in the asymptotic region, therefore according to classical

approximation we can interpret the term e’ “" as a beam of monoenergetic particles of momentum fi k and
-of density 1, representing the incident beam and the term [@ ¢ is interpreted as a beam of particleg
r

emitted radially from the scattering centre and represents a beam of the scattered particles. |
In accordance with this interpretation we can calculate the number of particles emitted per unit time
into the solid angle do located in the direction .
ikr
The scattering wave-function is f () <— : hence density of scattered particles
r

ikr |2

= L
ps = | f(w) ;

| 2
=?lf(a))l

From fig. 11.9. small elementary area = r . rdw = r° do

The volume element between r and r+ dris = r* do . dr:
As ps in the number of scattered particles per unit volume, hence the number of particles in this

clementary volume
N = p; r2 do dr.
Substituting value of p; from equation (4), we get

2
Ny = LOL 24040 = 1 p) Pdrd o 5
r
" The number of scattered particles per unit time
| dN; 2, dr _ 2, 2,k
dt - lf(w)l dO) dt - If(m)l dwv_ lf(m)l d(l)' i
T hk
= | f@) IZTn—dm. (6)

If J is the current density, then ' J = po. (7
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Since beam of parficiac : b . am is the
number of particlespamde-s 18 travelling in the same direction with velocity v. The flux of g o8 ber of

particles in a vo] CTOssing unit area (perpendicular to the beam) per unit time. These are num
ume of ypjt Cross-section and length v.

Butp =1 for incident particles.
Jopolik ..(8)
Also if 6 (@) is th - : " in solid angle da per
okl © Scattering cross-section, then number of particles scattered in solid angle 4w pe
unit time. ’ P :
=Jo(wdo = h—,: ‘0 (w)do [using (8)] ~9)

Comparing equations (6) and (9) we get

hk hk
w O@do = | f@ |* Lo

. o@ = |f@*. 0
Here f () is called the Scattering amplitude. »
Hence the total Scattering cross-section s
. Crotal = I If((’)) Izd(f‘)‘ -
The wave-function Vi may be normalised by making
[ et e = 1
or I A Pdt =1 . .(12)

over a large box that have periodic boundary conditions.
Therefore for finding out the normalisation constant A, we must take the wave function as

. i kr :
Yy = Lim A{el K +f(m)-e—]- ’ ' «(13)
r— o r :
The wave-function may be normalised to unit incident flux by choosing

- 172
v .
but for simplicity we often choose A equal to unity.
The argument given above is incorrect for two reasons : .
(i) The current density vector is not simply the sum of the current of the incident plane wave and that of
the scattered wave. We must add to these contributions, the interaction term

ik ei kr
e " and flo)—
in the foregoing treatment. The interferences between incident and scattered waves have been deliberately
ignored. '
(i1) The representation of the physical situation by the stationary wave
{Et/h _
V() e .(14)
in an idealisation. In reality each particle participating in the scattering process must be represented by a
wave-packet formed by superposition of the stationary waves of the type (14) corresponding . to -
wave-vectors of magnitude and direction slightly different from k. This packet is constructed so as to
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“correctly fulfil the initial conditions. Therefore the scattering phenomenon must be represented by suitap,

wave-packefs.

116. GENERAL FORMULATION OF THE SCATTERING THEORY

The Schroedinger equation for central potential V (r) is written as

2 ,
(—2% v+ V(r))\y = Ey | (1)

. |

The complete time-dependent solution of above equation can be written as :

vy =y BT
j k. -iE/m -
= [y e 2)
R ik :

where Vs (=f6,¢) ——+8(6,0)—— -~ (3)

The first term in bracket of (2) represents the incident wave ; while the secong{ term g, the scattereq
wave. The first term in v, represents outgoing scatterted wave, while the secopd term represents the
incoming scattered wave which does not exist in most of the physical problen’is. The stationary state

solution of Schroedinger equation (1)is /

v = vy, )

Comparing equation (1) with (HO +H’).y = E v, we note that the perturbatipn operator is V (r) which

is very-very less than E ; here H'is the unperturbed Hamiltonian, The unperturbed Schroedinger equation js
therefore written as

A}

2
h w2 .| ikr_
(-——zm \% EJe =0 (5

So that the Schroedinger equation is now written as

f 2 ikr
(_EV —EJ% ==V [e ™ +vyy
==V(ny(). o .(6)
This equation may.be written as
2. ;2 2 :

V4 v = VO () A7)

where k* = 2m_2E

N
Further substituting

2
TVOV0) == np@) )
il :

equation (7) takes the form

- 2 2

(V'+E) y; = = dmp (1), (9)

The quantity p (r) may be regarded as a source density for divergent spherical waves. Equation (9) may
be solved by using principle of superposition. Accordingly if y;; and y,, are solutions of equation (9) -
belonging to density functions p; (r) and p; (r) and satisfying |
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then the function y, < Vo 4w '". I ,=f2_r—
s1F W2 is a solution of equation (9) belonging to p (r) = p; (7) + p3 (+) such that
: .
By means of ¢, Vo = = wheref = f; + £, +{11)
$ O the prine; .
for simple point : “inciple of SUPeIPOsition a solution of uation (9) can be found by adding solutions
PI€ point sources of ypjy strength, The identity eq |
PO = 8¢-Npryar A12)
ents the arbj i S
mN : arbitrary density P (r) as a sum of Point sources § (r ~ r’) at the point r’
OW In order o express Vs a3 a functiop of

==4nd(r-r) ..(13)
where Gr,r) = R kIr=r) -
is called Green’s function, Ir-r'|
If G (r, r') is asymptop; ; ‘ . o
forthe density p (1) )irsmg!i}v(::icbt; a function of  of the form (11), then the solution of the scattering problem
¥e=[Gar) pP()dr (14)
Green’s function : It may be noted

that Green’s Junction

V+B G () = -4n8 ()

...(16)
r being the radial distance in new coordinates.
We notice by direct differentiation that if r ¢
ikr
V+1) a0 .(18)
Therefore equation (16) is satisfied in every region which does not contain the source point. To prove
that the singularity atr = 0 s properly represented by G, it must be established that the function
8(@z) = 41—n V*+5) G (r) -.(19)

must satisfy the condition of a delta function. From equations
r#0. Thus 0 (r) satisfies the first requirement of a delta func
atr = 0. The another condition of a delta function is that

[ smF@dr=rQ
T

..(20)
where F (r) is any continuous function of r which has value F (0) at the origin and 1 represents thue region
of integration which is any finite volume containing the orig

in. Let us therefore choose for our range of
integration a small sphere of radius €. Consider the identity

(16) and (18) we note that if § (r) = 0if
tion, namely that it is zero ¢ srywhere except
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G f (V2G+i G F-(V' F+FP) Gldt= | [ = tr] 1)
If F(r) is sufficiently regular within the sphere 7, then y,

where S represents the surface of the sphere T.
may assume positive numbers M and N such that

\a F+EFI<M

and &l <Nerse) (22)\(0&\
In other words the above functions are bounded in 7. Now it follows that \ U

3 If(v F+k f)delSMflG]dr ?@? L

( & w‘\ J‘ 4 d 21:ME \ /)j (23)
3 ,.' =M —4nr ar = . )
‘\@ ,t A A

y \r ' y
and \ , aFGdS SNI IGldS B‘ Ny ‘
s or \ ~of ~ .
B R
N ' W 2B '\
v~ Therefore if we take the limit € — 0, we find v Lo — /] \_; \;71
ok '~ " No N T
) U’Yk J @Fk F) Gt 0 \ v v"\)wﬁ
u  and 3f GdS—0 | S e
\ 4 ‘, 2 . | 6 %,
S In view of above relation equation (21) in the limit € — 0 yields v vn{/ N
aG : y 'y y ©
. Lim | ’o+#G Fan = Lim | or 8 RN’
ik A A
= Lim (ik—-—;- Fds N
€=0"s r r ‘ v/
5 eik& eike
= Lim 47" F(0) ik-—-——TJ
€ €
«(25)

= - 4n F (0)

Because of relation (18) the only contribution to the integral (20) must be noted to the singularity of

& (r) atr = 0and by equation (25)

| L[ v+ GF@adi = F0)
4’1t

LSMme=F@

Hence & (r) is a delta function. Returning to the original co-ordinate system by the substitution

r — r + I/, we obtain equation (13) instead of (16).
The asymptotic form of G (r, r') is easily found by refering to fig. 11.10.

If I r | is large compared to | I’ |, then it is clear that

g Y rer’
lr=r'l=r- cosBrr——n,
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- r.r’ ~ N

r—=—
T

* ’
lr=r’l=|p|_E.r

Irl
=r - L’ -r
The error invo) y )
The rmvovedinthis‘a.r 5 : o
arb";ar:yﬁi“:?u byalcm"smg Ir| su})f;t’i:i?r:l;ul?rlg:an R e "\“"\ 9
ubstituting value of | (y _ (&% ,
e get Of | (¢~ ) | from ®quation (26) in (15), Fig. 11.10. The vectors r and r ?f)( $
. & Lt
G(r,r) = S (klr —r’)) rL )27 AN
Il‘-r'l i " / \S, ¢
'r’.l; - "/#AO-S ﬁ,f{\
o . > =2
) exp[zk(r . ﬂ ?(f\ .d‘,{
(-5
r-=— |
r
’
exp[ik(r—uﬂ ,
= . -[1+r2'+....]
¥ r
Thus as r — e, we obtain k
- _-’\{
ikr s
Gmr) = exp[—ikr'.r) £ R\ ~
.0 k, kl‘ . r r 2' l,{ ‘-}\'1_
Writingk’ = " , we obtain ’(\Y‘/’\( =
L~ |
. ! * ' vap ikr Q.z R\
J< /¥: 2 G(l', l") - e‘lk -_l".e_r_ 0 ."(2.7)

at point r’. Setting

l 1 2m
PE) =~ 2 VOV ®)
from equation (8) and the value of G (r, ¥’ ] from equation (15), equation (14) gives

k (r—r’)
1 2m el ’
Vs = —475 hz V(l") \P'(l") | r-r I dt '-'(28)
This is a part of the wave-function produced by the scattering potential,  in an integral involving the
ikelr—r'|

function e|—r_7| which represents just a spherical wave that spreads out from point r’, with a wavelength

A = 2n/k. The amplitude of the spherical wave is proportional to the product V Ny (@)ie. joilitly o the
strength of the interaction and the amplitude of the wave-function at . All these spherical waves are
compounded at the point r which is then added to the incident wave to produce the total wave-function ¥ of
rlie. v (r)).
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ik r’+% r//.‘ '
Yy m f Jkir=r o ;
ik.r ’
= 3 -— | V@)=——d1 +(29)
o1’ Ir-r'l /

If the potential energy function is confied to a limited region of space, then the asymptotic fory, of
Green’s function form (27) can be substituted in equation (14) viz.

Vs = - f Cr,r)Vr)y)dv
then, we obtain,

: AP ,
v =-—f [ KTy de (30)
r- ) 2k 7
e
i Ve =£6.0) =
Scattering amplitude f(6, ¢)
= ___”‘_2 X Ty dr (31
o 2nh
This yields for the Scattering cross-section
2
c6.9=|76,¢|* = ( sz / f T ey ) ar (3
2nh

11.7. BORN APPROXIMATION

If the scattering takes Place from the scattering centres which are localized but are weak such that the
Scattering does not take Place at large distance from the scatterer and scattered wave is weak in amplitude,
then Born approximation can be used to evaluate the scattering amplitude £ (6, ¢), and hence the differential
cross section 6 (6, ¢) = | £(6, ¢) |

The Born approximation js applicable whenever potential function V is fairly small. The idea is simply

that of successive approximations. The Born approximation simply accounts neglecting the rescattering of
the scattered waves provided the scattered wave is small compared with the incident wave. '
The total wave-function of the scattering problem with source point at r”’ is given by

v(r) = & ’-ﬁ G V) ya)de .(33)
1: :

Replacing r by r’ in above equation, we get
v() =T g f G, V) y () dr”
n

Subsﬁ'tuting this value of y (r’) in the integral of equation representing the total wave-function with
rce point at r’ viz.

V() = e;k.r_ﬁf Gr,r)V()y()dr (34)
T

ve get,
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Thxsequatlonob (\T‘[I + | /H

process can be pe tegingmep L2 G (1, {(( +
represent a solutiop, Drovi ded“;lgmtely te

o G.Seri .’7\ ™o

_'Iheﬁrsttem ko ' nnofequation(34.This
scattered wave- Ction {‘et}msems the jpeiy C Seres hasetl}l;m fi ln) soies which ¢ )
wave exp (ik . ') py the ingey. TSt term, in Iﬁ“‘ VaVe-function o
from 1’ to the point of Obsegcatlpn 1% ® SCattereq N While

() in ave the re 8 terms correspond to
, ti the y Tepresents ; - pou
integration over the Tegion jp y, o, C tomzslement dr’, Th; “ngle scattering of the incident
scattered at the pojng | i

iSing fra > Produces a waye hich 1
C e ; which travels
etad: v ) e"k.,r"e force is effecty, qrising from single SCattering is obtained by
sc'atted l.'_aln the traye)s from p ¢, r.p TaVels (o g . e
r’andr’ Accordmg]y nth te The toty effeo.” DIt ¥, [ (¥, ) v (g gk - T
the region of interactjy, before TePresents ect of al

: ' ’], Wwhere it is again
. ' the conty . C scattenn is btai
e Interaction jg weaktramhng 10 the pojne 210N of wa s
Neumann serjeg

by i (i
. Point 0 \Ves Which haye been Y integration over
3 ] SO th ri Where the
P will Converge . at th C '
v. This is called mg:_dh[

) Scattered n-times in
S
the first g, and

Otal contribytigp is observed,
o that :Vt: € is not 100 large, it cap be expected that the
! n the serjeg Wwill provide ap approximation to
¥ =k '_~.5_’1__‘[ & ik
. 2 (&, r) v ey o &
o Thelequuz]tlog by cutting off g eumz:nh S R0
viously ofn g . " Serieg at :
red more thay . ﬁlg:oglmatlon unts tq neglec&tlie nth term is called the nth Born approximation,
scatte; . s _ 18 multiply scattereq waves which have been
Substituting asymptotic form of Green’s fyp:
) !:_glon from (27)in (36), we get
V= .r____r_n__ € __ ik’ .p ik.r ey
me r J € Vaye ™ T gy -(37) :é; ’
Theret V=450, H—. ’ 2(38)
eretore according to ﬁrst Born approximation Scattering amplitude ‘ y
76,¢) = - ;’ln; j ¢ ® 17y v o9
, n
Hence the scattering cross-section : \
2 \ g
G ®,0) = [ j ei(k—k’).r’v( v N, W,
[ iy &

11:8. CONDITION FOR VALIDITY OF BORN APPROXIMATION ¥
The Born approximation will be valid only Whenever the total wave function is not greatly different
from the incident wave function ¢ & It wi

L, therefore be valid whenever the scattered wave v,
small compared to ci k.r in the region where V (r) is large. In most cases both V

(r) is

(r) and y, (r) are largest

igin, so that iteri e validity of Born approximation is L ourm aplod
near the origin, so that a rough criterion for th ty Pp v, prhoven) W ‘
L . LA ;:_79; L

L
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2 l val
lys(r) I < 1 for small values of y, -

In case in which v, (r) is small when r is small but large for intermediate values of 7, such g V®)is

: s s i happen that Born g :
still appreciable, we must carefully apply this criterion. Further it may happ : ro R
holds when the criterion is not satisfied. Having s (r) small everywhere provides a sufficient conditio,, fol:

validity of the Born approximation; but not a necessary condition. 3.5 U .

If we recall that a change of potential acts like a change in refractive index in optics, we cap detiye
another criterion for the validity of Born approximation. Consequently the change of potential Toduces ,
change in the phase of the wave function. The total wave function V{l_u not differ greatly fro.m the initjg)
Wwave function if the phase of the incident wave is not much altered as it passes through th? region ip Whicy,
itis influenced by the perturbing potential. At great distance the magnitude of wave vector is

Y2 -
k = Y2mE) and near the centre of force it isw‘

h
The change of phase due to the potential is then given by
¢ = J‘o \/ i‘? NIE- V)1 -E] dr. -4

It this_difference is small compared with unity, we may take it as an indication that the wave functiop is .
not very different from that in the absence of the potential. Thus the first order Bom approximation wj]] p,

valid if
2my |~
\/[;’;‘-]J‘o [VE-V)-VEldr

If V<< E the criterion may be simplified by expressing equation (43) as a function of the ratio V/E

and expanding the square root. Then the criterion becomes
: 12

1Ad| = <<1 | (43)

Gl e -
_— \/(%EJ fo”{(l-z_g+ ...... RIS
or ' '\/[2—:2£ J: %dr </< |since§<<1
o (LZJ -_r Vdr|<<1
20E)|V0
o \/ [ - ;’;EJVF <<1 _, (85)

where Vis the average potehtial and 7 is the mean range.
In the case of the scattering of high-energy particles by the square potential well of radius a and depth

Vo, Vo << E, this condition gives
m
\/ 2. [Voa<1 (46

( 242 E J , .

m Voa :
or E< <—2— (TJ ...(46b)
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119. SCATTERING BY A SCREENED COULOMB POTENTIAL, RUTHERFORD'S N
(. SCATTERING FORMULA FROM BORN APPROXIMATION. o
\3 ; ! . We know the scattering amplitude from Born approximatignK ,
Ay £0) = - —m—zf Ve dr (1)
mu £ o l 2rnti A
{5 Uwhere , K= k-K(fom39) '
N )¢~  Theintegral is solved by taking polar angles 6, ¢ about the direction of K. };) et
{7 A L . © = 5 iKY cos® . . 24 T A
| \‘ Ry C vey & ar = f vir)e" 7 dosin0do r°dr {_‘)/’9
;\:\ —-— \' r=0v6=0 ¢=0 ) ,\ \ ':n
\ ‘-5 : ol iKr cos® . 2 \‘: “ A
NN = 9% o V(r) e sin@d0r-dr A
o /Y f\
‘: ‘;: Letcos 0 = 1, —sin0 do = g v J/*»-.\,U\
3 " " kv Y ik ik oS
\"“\- AN I e_K"coses'nedG' = —J. iK’,tdt =| & =& ¢ A
679 b n@dy =-J e =& |, ik W
~ S 3} -y . Y & npf' L
5}:“....: f V() etK.r df:—?ﬁj’ V(I'){elK et V¥ dY <M ‘l'-P
; T iK 7g S S
A o ‘),‘
£ “1\ & 4 = . ’ )
N ) : = j V(r)sinKr ¥ dr. ' A
¥ Then £O) =~ 2= 2 vy sinke v . Q)
\} amn” K %o \
We shall find the differential scattering cross-section when V (r) is the screened Coulomb potential
VO = i sLaymem) L8755 8 g
Ze and ze being the charges of target and scatterd particle respectively and r,, beihg called the screeniffg radius,
On substituting the value of V (r) in equation (2), we get 0
ARV P S 1 - [" rsinkr e
. \'1'\5 <& 12k | 470 | %0 4 | -
r“,\'\h{j»:’ g f“’ 2 o ) ) :
_,-'I’/" N O =__§rg_(j2z_e)"‘ e r’/r"sinKr’dr’. /
\ “\8) d c"t‘r h K nao 0 2 -
¥
' E —V/r . LY
But f e "Usinkrdr = : (.
: P (hedt ]
f@) = - [ 22 ) kg e &
B £ ' oS e .4 ingy ) kA2, g :
VARSI o (2mezd) 1
amegt’ g2, L
1
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But K=gk_p
K.K = (k‘k‘)-(k'—k')-
. 2 2 2
o K =K4we? g 1
As k=y
K= k +k2-2kkc0s9
= 2%? (I —cos 6)
2 s
=2"-2 szg‘ = 4 sinzg
K = 2%sin /2
2 2
f©) = - 2’"3222 1 .(4)
dmeoh 4kzsin29+-12-'
. ' ro
2
c(6) =.|f(e)|2=[2-'"ﬁng L
4negt [4/rc2sin’e+i2Jz
r2 |,
For Coulomb Potentia] ’
] AS 79— %0, V (#) becomes the ordinary Coulomb potential
vy = L %
dney r
, 2
. Hence F(0) = — | 2maZe” —1
=~ aneo’ | 4% sin 0,2
and scattering Cross-section
2
' 2mzZe 1
‘ o® = |£0) |* = :
L e | g2 sin” 1 6)’
But fik = p,
2 2
o(6) = _n_zI 2 cosec4§
Using p'2 = 2mE, we get .
) .
=1 |2z 49 -
c(0) = = E"‘ 4neg cosec 2 (5

Itis in agreement with the classical Rutherford’s formula of q-
The total cross-section calculated from (4) by integrating over

scattering with Coulomb field of nuclei.

all angles is

* 2
% . 2mzZe,
Ototal = IO 0\(9) 2nsin0do = {47!801'12

T 41tr8
' 2
(4k2 2+ 1)
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1110, SCATTERING 5Y SQUARE-WELL POTENTIAL IN BORN APPROXIMATION

L“b\v_q

Let the square well potential be defined as \/ o

V() ==V for r<a

. =0 for r>a
The scattering amplitude by Born approximation is given by

f@ = -1 [ KTy
2t

!\N& hf

T

Vol

!

L tene,
.-\, 1) _g f’af‘

a

Taking K as the polar axis of new set of cordinates, so that vector r’ has rectangular componems
r’smOcosq), r'sin@sin¢, + cosO

-\{‘ 1,' ,\
\eF K.r -Kr’cosB av = r’ dr’sm9d9d¢
‘?"‘:‘ & iK' cos 0 _.
_\e : AN )
‘ A\ Putting cos 6 = ¢in last mtegral, we have , ey x EY\ 4 ?
"a Y. +1 i . A o
f(9) =-—’"—2L V(Aﬂzdr.Zn.I_ & ar - /r Y
AP K7t \ '.“ ! — \JQ
) { _ o U ?'6 ;
\\/"\_ 4 ———f v r d/[tKlll o |
) RN \L ey N A
N ' {~ J’ ( iKY _, uo!] N 0\7\ P
Yoy VA = vt dr - ' . Py
~§ s ; ¥ iKY’ 194 NAYA
\ - ,{’ 5 X L i \_/ x‘\‘;u
v N = ——’2" f kT vty e ar ot
\ ' i K
~ Substituting V(I’) = -V forr<aandOforr>a / " ' o
We get Jh’ N
AC 2mVy [ Y v
a4 AK. f(0) = +ﬂJ‘ v sin K’ dr IR
‘X_, I 2 0 ‘ »
K N )sf
Integratmg byqﬂs we get w A
\f\ 2mVo ( sin Ka | LA s
L f() = ——2— { —acos Ka G.ﬁ\
W e N \
Scaélring cross-section ) b o \.1}:
N\ W o®) = |70 | A

2m Vo

- (A
b _ sin Ka & 2 3 v ;”\\_
'\‘ 0 h B —hz K2 K TS A .,- . . : 7o *}!‘ \

/
‘Q/'-( {r;;.‘;“ﬁ | £‘\ NEE o Y
-
T SOV ‘ /\')
AN D
LA \'{""”-'"}\ Py ¢
i y “ .
A\ h} L y \ i :
0 0 pogwd A9 »
i W LR
1 > .
_ i} i
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where . 7 I N ¢
(Ka) = S0 Ka - Ka cos Ka SAPTE -~
8 (Ka) = 3 w,ﬁ/ ,_é_"u _
(Ka) oA ¥
or . ]
g(n) = [smx—xcosx}z \ A
3 1 r
x \

Sl]bstitllting K - 2k Sin _g_ ,we get .‘;;\, \

o 2mVya®
This is required expression

Th ion 8¢ _ ;
e function 20) = Ygx)is 1 at x = 0 but falls fairly rapidly for large values of the argument

approaching O atx = 4.Qor@ = 180°. Thus large angle scattering is not likely to take place.
11-11. SCATTERING BY AN EXPONENTIAL POTENTIAL

The exponential potential is of the form

V(r)'= = Vge ™/°

where V; and a are constants which determine the strength and the range of the potential and negative sign
shows that the potential function is attractive.

fO.0 = - [ KT vy ar
2nh

Taking direction of K as polar axis of new set of coordinates, we have
K.r = KF cos &
and volume element dt’ = dr' ' d0’ v’ sin 0’ d¢’

= /2 dr sin @ dO' dy.
we get :
m - i T iKY cos® '
fO.0) =-—5 | vt j dyy’ e‘ " sin 0 dOf
2nh” 70

n
=———J. wiryr dr’21r.j e!K'lcosesmG'dG'
M

Putting cos 8 = p = —sin 0"d8" = dp, we get

+1 :
| K’ -
1 f(9)=_§.0 V() r* dr j_ ¢ Pdp
'\W LA
Y i [* oo lKr'p
Wi = =B
"L&J s . - h2_u 0 V('/) '/ ar K"
W A i g SIVAR J' lKl’ —e - iKr
& m —-_—_—
\ v = — gz- 0 V(r’)r’ dr iK'

A S RN __’_"__J‘ V(r’)H(eiKr'—e;'iK',)dr'
| 7 KK Y0
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Substituting V(') = - v~ "7®

s ke _ - iKr) gy
R et
K
mV. % -7 _l.—iK] —rl[l-HKJ}dr'
= e e a =t ¢
1 ik 70
Using integral formula
o !
o
\{& f mV A :
- QO R 2
& o 3 'K[ L) [*+ix)
&3" 5l a a
A ooV (L)
& ~+iK | -| —-iK
L:,‘S\ ﬁ“ mV (aﬂi] {021 ]
N =70 1 la
AR ik {i+1<2]
N ¥ &
W ,:;\ “ '\ N
& mVo  (4iK/a)
'\{\ ;‘q P 2
PANR! L ik (L, 2
. 6}‘ ‘é“ k az
& Y| )
D O dmVya 1)
<
y 1 (1+ Ko’
But K = 2ksin o)
- dmVya’
16) = 2 22 . 207 )
h (1+4ka sin EJ
. Differential scattering cross-section .
: 2 6
16m Vza
@ = ) e A
h4[1+4k2azsin25] L,
Total scattering cross-section 3SR v
Oomal = H o(8) sin 0 46 d 3 .
_16n'Va f " sin0de J' " |
- 4 0 4 “§
L 1+ 4k%? sin’ g J ’
16m* v [ . =4
= _’ﬁTO— ; [1+4k2azsin2-g~} -2singcos-g-a’9.2n
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\ 161tm2V02a4 g -
¢ = - . 9 9 l
' | Tr— 0 (1'|'4kzazsinzg -4k2a2-251n—cosi~_(5d9)
29D ‘ & 2) T T2
\,”l ', I, 'lﬁnmzvz 4 . <o
0y* Js' = - 0 a e 3 T
N )/ \[ 1+4k o sin? 2 g
WY 3h4k2 [ a sin ? ) S,Aﬂ . -,
/7 ' \ . gl
\ == w [(1 4k2 2.-3 \1 9 Slat"ﬂ =P
+ . VI $ .-
Q ot it — 9
N 161tm2V02a4 1 ‘ S 2 4a
&/’\a‘ N \( = -3— 4 2 [ =Ty ] .
e L (1+4k' A 0
" Condition of validity of Born approximation is B S I
. i 5 Q"JP .
1Yo (0)1 =[h%]z JO vy @ ¥ —1yar | <<1 Ao
h k
Siven | V()| = Voo™ ™/ ¢
' i i 2
2 ¢ - L
e (0) I = _’;'_ Ve I . //a(e2zkr_1)dr, <<l
h k 0
V « 1 :
m k- = - .
- (2 " onbor_ [ \_
h k 0 .
| N o 2 1 -
& [%-217(]# ,, g :
} Vo ¥ -r/a \_
PO hk 2ik -1 _1
X Sl a a ),
¢ O : Vob | ¢ 2
= r_n_2_0 - 1 + 1 <<1
\ h'k [Zik—-l-] [l]
LYy a a
- fudd! [ 2 + 2<<l | \
= . a .\
hzk 21]((1—1 .
Vi ik 2
_ mzoa I -2:ka1 l Gl
1k 2ika - |
(mVea ¥ 4Pd?
=173 22<<l
| hk 1+4k™a
2 .
- 2mVya 1
<<l
" | [ w T(1+4k?‘a2]

For low energy limit ka<<1
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2mV0a2
2 i
| Y (0) 1 =[ 2 <<l
il

2

or 2mV20 <<l
h

For high energy limit ka > > |
| +4k2a2 = 4k2(12

2
2mVya 1
2 —r
1Yo (0] =(———ﬁ2 I'4kza2<<1
mV,
or Yoo O] = << 1.
ﬁk

1112. SCATTERING BY A GAUSSIAN POTENTIAL

The Gaussian potential is given by

22

Vi =-Voe e
where Vj and a are constants which determine the strength and the range of potentlal negative sign ghoy,
that the potential is attractive. s

The scattering amplitude in Born approximation is
fo.0=-—2 ] KT v a
L 2nti
Taking direction of K as polar axis of new set of coordinates, we have

K-r’ =K' cos®anddt’ = ¥ sin @ dr’ do’ 4§/ ;
o fnf2n ,
So f(e,¢)=—izjfj ¢y v sine ar do dy
2nh” ©0 C0 0 ‘

o T . , 2n
=-——’"zf V(/)r’zd/_" e”‘””“"’sine'de"[ d
2nti” ©0 0 ‘ 0

L +1
m 2 | Kr’
=-—Zfo V)Y~ dr j_ e Pdp.m)

j I tKr’p)
=,_ = V(/)r’ ar X7
1Kr’ - iKr’
= V(i’) r’d/[
_ 2/ 2
Substituting Vi) ==Voe ' ", weget

mV. & _',2/ 2 ; ey
76, 6) = : 0 f ; a /(e’K/—-e lKr)dr’
oK 0
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If we Teplac
) er '
may write M=y, he Integrang remaj >
NS un ; ‘
Chaﬂged “€. Integrand is even function of hence we . *
o . \
mV + 0o P 'ff'“/
/6,¢) = il S ik g
h lK v 'Ie ar ol \: ' (2) +
: (& Y
oo b il Y
<M |t (r _ika} K2 A e =
& Wik dow "€ a2 | KA, 0
Substituting _-Ka I . tel |
or d 2 A 4 A r”':/"\ y |
\ w..}_«_ dt Y = alt iKa ‘AL
N “2) ‘
(} Y, ’_\ -gr {. =dr = g4
+ o0
76 0 = 2V Ka) -2 _i2 2
L (e
p
& ’ = mVoa ‘K2a2/4 toe - ' wa T
: _ 2. € te”’ g4 Ka o0
ik . 5 e dt
The first Integral on R H.§ Vanishes a5 j, : -

e dt = ‘\jn
mV, a 2
f(6,9) __22_ Y Kza/4[0+lK—a-\/n
h™iK )
_ mVyd’Vn -
= o .
As K = 2ksing
2
3
Voa 2.2 .2
f(0,0) = fﬂz_‘h_t ~Ka sin’ (8/2)
2h
: 22 8 2%, 3
Differential scattering Cross-section g (6, ¢) = e Vzgza z o~ 2K a"sin” (8/2)
4h

Condition of validity of Born approximation :

It is given by
m||° 2i kr
_| Vsc (0) | = ﬁ _..0 VIn(e™ ™ -1ydr
For low energy ka < < 1, being range of potential so we may write
¥ 1 = 1221~ 2ikr
om | |~
| Wee0) | = }1—2 Jlo V(ndr|<<r

<<l

-(3)

.(4)

(5)

.(6)
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For Gaussian potential V(r) = - Vy e & * o3
ZMV() j e"r/a drl<<1
| Vsc0) | = 2 0
h
2 a’dr
Subsl:ituu'ng—2 = t,wegetrdr = >
= 202 7 -tdt=a_["_J = —
oe_r rdr="-] ¢ 20-1], 2
' 2
2 mVpa
2mVp a 0 <<1 (7
l%c(O)l=?2—?<<1=’ 2 | ™)
This condition is satisfied if the strength of potential V is negligibly small. Thus for low energies Bom
approximation-holds if scattering potential is weak. o
v For hl'gﬁ energy ka>> | tﬁen the contribution due is exponential term may be neglected, g, that
equation (6) becomes
) f V(ndr|<<1 -~(8)
n k|0
) 2,2
: ; -r/a s 7
For Gaussian potentia] r) = - Vye , this becomes
* o 2,2
kY0
mVo ( an mVpa J
— o Ll nT<<] (9
or n 2) STy ®)
Thus for high energy Born approximation holds jf incident energy is high and the scattering potentia] js
weak.,

11-13. ATOMIC SCATTERING OF ELECTRONS :

ney r dme, lr—r’| -
where r is the position vector of the scattered electron and P(r’)isthe particle density of atomic electrons
it the point r *,
The total charge density (nuclear and electronic) of the atom for convenience, may be expressed as
Pe(r’) =8(r")-p(r’) (2)
n Vi) = — M 21 Pe(r’)dr’ |
The scattering amplitude J(6, ¢) at position r is given by
‘"o _.m K.
f(kK) = £@,¢) = T [y a (4)

Substituting (3) in (4), are get
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(K-k)-a=2nq ‘

(K'-k)-b = 2rB =)
t e k) e = omy : stal.
°gers Equations (4) Tepresent a set of Bragg equation for reflection from a crysta
S afinite numper of atoms, however large this number may be. When equation (3) ‘Sf
°r of terms, we obtain a function that here large peaks at Bragg angles. The width o
Ortional to the §jze

. . : factor.
; of the crystal. The function F ( K) is called the atomic fQM_
ngth of reflection of electrons in any allowed directicn. (i.e. height of peaks in different

where @, B and v are iy
All real crystals posses
solved for finite nump
peak is inversely prop
It determines the stre
orders).
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The work'm.g out of the higher perturbation theory is very tedious and when the Born approximation
breaks down, it is usual to tackle the scattering and collision problems, by a quite different method knowp
as the method of partial waves, The method of partial waves is mainly applicable to spherically symmetric
potenfzal and consists of the expansion of the wavefunction as a series of spherical harmonics multipli.ed o
a radial wave-function as in the case of hydrogen atom. This method was originally applied by Rayleigh to
the scattering of sound waves and later by Faxen and Holtsmark to the scattering of Schroedinger wave. To
discuss scattering we first

show that a plane wave is equivalent to a number of spherical waves. A
Plane Wave as the sum of spherical waves '

"
The plane wave travelling along Z axis given by A3
In spherical coordinates (r,8, ¢) withz = rcos 6, it may be expressed as v \
VY = R(r) ©(6) @ (¢) oy N
- eikr cos }?‘g‘ (D ‘
This is a solution of spherical wave equation c‘: N &
v
Viy+ly =0, @ = 2E Xy o -2
h ) ~ X
where L is reduced mass of particle. :Q\:L/
Substituting y = RO®, we note that R, ®, ® are the solutions of separated equations \”\ \;‘»
@+Zéﬁ+ o td+l }Rzo | gb’ ‘, .(3)
2 radr 2 b T sy
dr r L Pweel
d( . .do : =% “
1 . m
———|sin@— |+{I(+1)- @ = (4
sin 0 de(s‘“ do ) { ¢# sng\
and dz—q;+m2¢ =0 -(5)
dé
Every surface of constant phase in the plane wave is symmetrical about the di;gct_ion of Rropagation{ g S
(i.e. z axis). Hence @ (¢) = comstant. & <.+ 05 (2 0y E O ALPen i & ""j“?&'“_ '&j (A LM 0
This means that equation (5) has the only solution if m = 0. It (follows that the solution of _(4) are
. =0 AUNVIES IR TV, VR NG
Legendre polynomials Pl(m )(cos ) = Pj(cos®) iy it i ’;-r-}l A N
Thus Y = R(r) Pi(cos 8) . aovibdl AN W\ W

For [ = 0, equation (3) can be expressed as_ 0& 2
: \ AN W

o plerhel ¥4 i \Cﬁ ?MFVSW e
! " 5 hﬂgjﬁ ! ﬁ%y

A Problannd he QC’\H&’)“%* .
o ropg e
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_0_'2_ (rRo) +k(rRp) =0

3.2

“ dr
- Ithas the solutions of the form

(7)

Ro = Ap s1zrk" = Ado (k7) ' ~(8)
‘J/

where jo (kr) is the spherical Bessel’s function for ! = 0. ’ tion. This su .
The case I = 0 has strong analogy between equation (&) mt B esscl’s equa on-be gge;ts that if 4,
are arbitrary constants, then the general solution of (2), having axial sy mmetry, ay be expressed as

w - elkz = eikrcos@ = %RI (r) Pl (COS e)

]

= 2 Ayjy (kr) Py (cos ©) ()
For large values of (kr), the asymptotic form of ji (kr) is o
) T\
. — Sin kr— = veo 10
i) —— ( 2 J (10)

The value of A; may be obtained if we multiply both sides of (9) by Py (cos 6) and integrate over al] g

Putting cos @ = xin (9) and using orthonormality conditions of P; (x) (m = 0), we get
+1 . ‘ +1 e
o | * iy de = 2 A ) | PP, (dx
7 5 p _ _
) ‘,r‘\(:l ’ . = ﬁAm/m (kr) : 2m+ 1 6ml

2 y

) 1 1 .
. 2 _L[m I_i"'zer‘, ]
= A+ AN = o e ‘e’(") 17 [ikr j., ¢ A Rdr

The second term of R.H.S. in above é;uation is the order of 1/7 for large values of 7 and so ne
'Iherefore for large values of r, using Py (1) = 1, Pj(-1) = - 1)1 = ¢ ",

LA B

gligble.

2, 1. Y, 1l ie_in -ik A
A+ 14 gy 2J~ ikr[e o] =
‘g A ’ &) . In
A L ___.iedn/Z et(kr 2}_8 t(kr—ZH
- . { tkr
=2 Lanlir_t®)
=2 7 Sin (kr 2 J
This implies | A= Ql+1i (1)
Hence equation (9) gives . o
'q. _ ikz oo ‘1. )
V=e =X @+D)iji(kn)Pi(cosB) (12)

’re the asymptotic form-of ji (k r) is given by

equation (10). Equation (12
valent to the superposition of a number

) suggests that a plane wave is
of spherical wayes,

-

#
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consider the g .
e at _
having int i tering Problem Je; (¢ consider a plane wave incident along z-axis in a region

v = ke, 0 eT , w13}
incident scattered /
Itis a solution of three dimensiona) Schroedv:;vgeers equatlz:;ve
V2w+3%[E-V(r)]w =0. U8
The solution of this may be €Xxpressed ag i
VO = IR Y 19

\

This is a superposit
corresponding to g parti

Let us substitute

1on of a number of waves, Each term in above équation is called a partial wave,
cular value of /. the function R, (r) are called radial wave function.

AE K and V@) =U (r) ...(16)
h2 h2
Then equation (14) becomes
V2w+[k2—U(r)]\|I <0 ..(17)

As there is Symmetry about polar axis e, z-

. . axis (m = 0) and potential energy function does not
involve ¢, the solution of 17 may be expressed as

.

V(r6,¢) = y(r0) = Z;.Rl (r) Py (cos 8) (1)
Setting X1 = rR;(r) _ ...(19)
This becomes
V(8 = Zr g (1) Py(cos 0) | -» (20)

where ¥, (r) satisfies the equation

&
d—)g+[k2—U(r)—ul;—l)]x, =0 21
r r

In order to find the general nature of asymptotic behaviour of this equation consider r to be so large tha
U and / terms in eq. (21) may be ignored, so (21) becomes

a1
dr2

+K =0, (2

+ ikr
or ‘ Xi=e.
which gives radial wave only.

For better approximation, we define a distance “a” such that when r> a,V(r) =0 and wh
r<a; V(r)is appreciably finite. Then equation (21) becomes

é%+[k —”+1)]X . o

2 I=
dr r "

il 2
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This is spherical Bessel equation whose solution is given b).' P _ ,«;’N v\
Xt = AV J 4 1/2) + BV(Kkr) J2 1 12 i 1 # 0 20 Y ﬁ’)
‘ okr V172 A
and Jiv12 = (T) J1 (k7) C/“/} |
1/2 DRSS
Lot =@ (z—kf} G z«‘“" o~
-1-1/2 ‘ n & "y
- I n 7" 0’ Wy
. Ji kr) =,;cos{kr—(l+1)5} L Ve
& | = Lim L sinfkr-2
where = Jm sm( r=>
N (+Drm }
n(kr) = eri)mw 7 Sin {kr— 2 |
Then . Xt = A"rji(kr)+ B rm (kr), .(24)
X1 '
at

=R = A jy(kr)+ By (k)

A
" where A’ and B’ are new amplitudes which deviate from original amplitudes A and B. Let us take  as phase_‘r-.fr
angle between these amplitudes and put 4

A= Ajcosd; and B = - A;sin§, , q\f\**f
or tan §; = — i, ~ '\:5}:\
S R =Y 8y sin [ kr =T )~ sin &, sin{ kr— (14 1) &
o 1 (r) = o [cos lsm( r—2 J—sm lsm{ r—( 5
AT o5 sin tr T ), o =
" [cosﬁlsm(kr 2 J+sm61 cos(kr 2 )J
A Im
or _ Ri(r) = 7, Sin (lcr— 2 + 9 _ ..(25)
In this equation §; is called the

phase shift of the partial wave caused by scattering potential I/ (r).
n view of this equation (18) becomes

A )
y(r,0) = Z /c_r[ sin (kr-—lz—n+61)P,(cos 0)

!
TFL. AL
~ i[ e‘t(kr—2+3,)_e—z(kr—2+5,)
= Z > T X Py (cos 6) ...(26)
/
This equation is identical with asymptotic form of equation ( 13) ie.
. tkr
v = et
_ g 1. Imy eikr '
= IZ(ZI-}_- 1): -;sm[kr-;)P,(cos 6)+f(9)7
N ) In ) In
& 41 el[krf?J—e—‘(kr_TJ -1 '
¢ = ,[Z @+1D)7 By Pilcos®)+r f@) e )
“\' /

. L, \/
W \ }
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As equations (26 : ikr an
equation, we get ) and (27) are the same, therefore comparing coefficients al: &

; I
H=5+38
ey 21 —-iln/2
ZAIL—J )ile!‘ﬂ
!

d e- ikr from b()th

- Pi(cosg) = ¥ (2l+1 P (cos@)+r S
2ikr ) ;‘ 2ikr 1
- in . (29)
d H=-=+3 2
an ;Ale [ 2 ')XP[(COSG) =Z(21+1):.lelht/ -P[(COSB)
Equation (29) suggests that :
I is ..(30)
L : Ar= Q+1)i ™
Substituting this value of 4, in (28) we get
( Im .
QI+1) 1| T+ 1 il ,
z - 1
! 2i kr Pi(cos§)= % i 1)2'1. :r Py (cos ©) + f(8)
3
As W I _ iln/?
I =¢ , we get
-1 % ' ..(31a)
@ =@y @+ (e_2’ %_ 1y P, (cos 6) (
=0
1 = § i 8[ o i 8[
) - =% 2 2I+1) 818, {e———z,i—— ]P, (cos 6)
: | \ 1=0 i
) ; i _ = i 51
=% 2 Ql+1) e‘sl{e—z%’-——] Py (cos 6)
=0 k
1 i
Tk 2 Ql+1)é 3 sin &; P; (cos 0) -(31b)
. o 1=0
This formula was first given by Fexen and Holtsmark and is used quite often.
Hence differential scattering cross-section,
2
G(0) = |f(®) |2 = % 2 21+ 1) P;(cos 8) &' % sin &; .-(32)
. =0
The total elastic cross-section is the integral of equation (32) over the sphere, i.e.
T
Cwtal = 2T i o (0)sin 0 d6
= 4—’2‘ 3 @+ 1)sin® § (33)
L

. ) 2
smcej | P;(cos 8) [2sm9d9 = 2+ 1)

Here 8, the phase shift of /th partial wave is unknown parameter and is to be evaluated.
(a) Optical Theorem :

It may be pointed out that the scattering amplitude £ (6) jis complex.
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lues of /.
For® = 0, P;(cos ) = Py(cos0)) = P;(1) = 1 for all value:
Then equation (31) for 8 = 0 gives
1 ¥ 8 sin & Py (cos 0)
= — 2!+1)e sin 07 £
{OES: I_ZO (

1 ¥ Gin §
;Z(l+l)e !
!

and so

nfO) = 3 3 @+ Dsin’ &
/

where 1, f(0) denotes thue imaginary part of f(0) or the coefficient of /in/ (0)
Equation (33) for total elastic cross-section gives

4n ...(34
Crotal = _—Im-f ©) )

lled th
This relation is a special case of a more general relation (including absorption) ca ¢ optical

0 =0°) to thet
theorem. It relates the imaginary part of the forward scattering amplitude (i.c. at ) olal
scattering cross-section.

(b) Phase Shifts :

We know that total scattering cross-section is given by equation (33) which is cross-section of Jth
partial wave and & is the phase shift of the / th partial wave.

The scattering cross section vanishes for 8; = 0 or 180° and the cross-section is maximum if the value
T 3n
of o = + =, + == efc.
* TSogus g

According to equation (25), we have

A In
R(r) "rllx)rgo = sin (kr— > +51}

It comes from R (r) — A jy (kr)

So &y is the difference in phase between the asympotic form of the actual radial function R (r) and the

radial function jj (kr) in the absence of scattering potential i.e., V = 0. Ji (kr) will be maximum when

= [/k hence for the value of r (we choose “a”) r = a = [/k we get higher phase difference (since V will
vanish beyond ‘a’ i.e. r > a).

Small Phase Shift :

The phase shift will be very small if a < < I/k. Thus the summationiz involves thue summation of few

[=ak
terms suchas X -

Calculation of §; : §; is calculated by applying boundary condition for the continuity of Ry at r = a in

heregionr<aandr>a
. 1 dR[ _ 1 dR[
[R/ dr] _[R[ dr
. r<alatr=a atr=a

r>a
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But Ry = A;[cos §, j; (kr) - sin 8, (kn)]
(l 4R (r) J _ [ cos 8,j/ (ka) —sin & nj’ (ka) ]
Ry dr ra | gt g _k[ cos 8y jy (ka) —sin & ny (ka) 11,5,
Let 1 dR;
_R_l dr "> atr=a=1
So v=k [il.' (ka) — tan &’ (ka)]
Ji (ka) - tan 8m; (ka)
or tan &, = VL 0@ =i (k) ~(35)
kn/ (ka) - ym; (ka)

where Jt Ga) = iy (k) - 2L k)
and

Wi ka) =y (k) - Zl iy

Here W is the ratio of slope to value of the interior wavefunction. Equation (35) can be "se_d at'oncf;
an approximate expression for §; when ! is large and §; is expected to be small. In this case fywill differ
the ratio of slope to value of the solution in the absence of a scattering potential, so that we put

- k[jl(ka)ﬂl}

to obtain
ittle from

Ji (ka) _
s . j.',(% .(36)
Equation (35) can be written by changing j/; into Jils(o tl)lat
& (ka)’ j; (ka) ..(37)

tan 5[ = 2
o € (ka)” j; (ka) Ny (ka) — 1
which is still exact.

If now we make use of the power series equation for j; when [ > (ka)2 and use the value of jy in terms of
sine and cosine, the inequality (36) becomes

i gl< L
" ka
and (37) may be approximated as
5 - S0™™ g2 )™ .(38)
[(2[+1)!]2 [2L+1)!]

By using Stirling’s formula, we get
log [ 8y | = log | g| = 2I[log (ka)+ 1 +log 2] — 2l log !
The following are explanatory remarks concerning 9.

(1) From equations (21) and (23) it seen that for an attractive field ¢ (r) is shifted outward relative to
other function of equations (23),

ie. &, > for attractive field,
] 8, < 0 for repulsive field
(ii) Classically, [Ti = p p where p is the momentum of the particle and p the impact parameter. The

summation of / in equations (31) and (34) for the partial wave [ = 0, 1, ... in (12) is equivalent to the
integration of all values of the impact parameter in the classical theory.
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(iii) For large & and Z, the phase shift can be calculated by the Born approximatiop it becg th%
1
FORNP. - 7o,
&, % U (ro) ro
where 70 is the

classica] distance of clos
total Cross-sectj

est approach. For large [, ry, p = imp
on behaveg like

At Parameye,. The
serjes
fo
| I 3 t
Ce<X(2/+1) 8,2 = fo dp-p UZ(P),
as pp = hkp. .
In order that this may converge U (r) must decrease with distance at a rate fase; than 1,2
(iv) For a Scattering amplitude in forward direction, £ (0) will have the form :

fO) o T(2+1)5—k f: dp.p” U (p).

3
In order that jt may coverge U/ (p) must decrease with distance faster than 1/, .
(v) For low energy scattering by a potential of the asymptotic form c¢/;"

the Variatig
. ! 2 ns o
shifts for varioys ; are { the Phag,

8 oc 21 for 2<n-3,
T Sl for 20 = n-3,
8y o< k"2 for 20>n-3,

(¢) Phase shifts related to Potential
The phase shift &, depends only on the asymptotic form of R; ;
radial equation is to

however to determine it
be solved completely. This js possible for specific potentials, byt
Important informatio

ns may be deduced regarding ;. To express the phase shift in termg 0

) ) . . 0 y
compare the function y, with the corresponding function x;" o< rj, (kr) ;
corresponding €quations are

) Cxactly the
1‘n Zenery| Certaj,
f the pO[en“‘aL we
when potentig] V =

=0, the
4y Py Laxny
2 P -UN-—""7y = -(39)
dr r
& 0 /
—xy +[/{2'— !( -2*- U]X/(O) = 0; with X[(O)OC I‘j, (/CI) (40)
dr r
multiplying equation (39) by x,(o) and (40) by x; and subtracting, we get
(0)
0 s X d’ Xl 0
M N C I
dr dr
| df ody _ dg"” Uy @y, =0 41
or . QTF. X! dr =X dr —-U(n) Xt "X = ...(41)

Integrating with respect to r; from li

mits o to r, and remembering that ¥,
= 0; we get

0 . .
and yo' vanish at the origin

dy dXIO r 0
0 / ’ ’ ’ ’
/X/ ar X, }—_’;} U xi () x (7)dr' = 0
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It is obvious that thjg
relation i ; 0
e - 18 Independen; of normalisation of y and xlo  Let us normalise y/and X

X1= sin (kr+ Al and W© 5 Sin( koL n) ..(43)
2
\ = kr ji (kr)
k sin kr—'lit c
T [cos (kr+ Al

This means tha X, ©
! ‘
> then the brecketted term in (42) (for r - ) may be expressed as
= sin (kr + Al) cos (kr--lﬁ J
2

=_pa(lm
k sin '2—+A1J=-ksin8;

Th :
USat 7 — oo, €quation (42) becomes

ksin§; = JO VIR ) u () ar
or i )
sin & = — jo V) iy (kr) 3 () dr (44)
o i phase shift js exact,
o Owewer it is important for approximate
Xt = krjj(kr) then

Tius expression for the

known. H but is purely formal since ¥ (r) for all values of r is not

evaluation. For example suppose ; differs very little from

sindy = - k IO U A2 (k) dr ...(45)

This : . .
_ 's 1s Born approximation for Phace shifts, For the approximation to be valid, it is necesary that the
potential term U :

() in equation (39) is ve This i ible if i ineti ¥
: X ry small. This is only possible if either the kinetic energy term £ or
the centrifugal potential term dominates over U(r). In the former case 8, is expected to be small for all L

then we can take (ezi % _ 1) > 2i8; = 2i sin &
Substituting this in (31) (a); we get

oo

f®) =-% @2l+1) _[0 U(r) * j (kr) dr P, (cos 6) ..(46)
[=0 ‘
This reduces to Born approximation formula.

1116. SCATTERING LENGTH AND EFFECTIVE RANGE THERY FOR LOW ENERGY
SCATTERING

The method of partial waves is of special interest at low energies if the energy of the incident beam is
so low that ka <1 where a is the range of potential, then the only /= 0 or s-wave is scattered. All othr
partial waves in the region of non-zero potential are so small that they remain unchanged. The scattering
amplitude for s-wave is given by

£(6) = %e" % sin &y (1)

As the scattering amplitude is independent of 6 and ¢, we note that the scattering is isotropic at the
centre of small reference system. Therefore the total scattering cross-section.

4n . 2
Prowl = 7 Sin 8 , -(2)
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466 low-energy cross-section. Then we note that I"lr,,-(..
ow- :

the 4

20 _ 2
Lim kzcoscc % = 0o
k-0

In the limit & — 0, Gyyyqy — Op called

It is obvious that ' Lim sin & (k) = 0
k=0

Le. S(kj approaches o or 1 in zero energy 11':;’;1 can be described, instead of &), by two Quang,
It is found that low energy cross-sec attering is concerned. These are the «, fects,,, Ues the

sC € b
characterize V(r) completely as far as low energy ang,, \

p p i ith n’icleon-ny
" e length” ‘a’ introduced by Fermi both in connection w. ot e cleon SCatterj, © 1y
and thc:h scatzenni engbound state with a small binding energy, the two gy parameters ;
If the system has a =

: ionship ey; "oa
ill be completely determined by the bound state wavefunction and such a relationship exjg, beIWeenn:ihq
will be y

g ie i ing but not unexpecteq .
properties of the bound state and low energy scattering 1s interesing pected  sipg, botp ar

i tential V(r). . .
detcg:;'t't‘i‘:;};h;ﬁ;:" and (eﬂ'ective range for short ranged potential V (r) : g, S*Waye

' the
Schroedinger equation is 2
m
é+[k2_y(r)]u = O, U(f) = _2 V(r)
dr2 B (3)
e :
Letu; (1), uy (r) be the solutions for two energies ky, k5. They satisfy
4 (0) = 0,1 (0) = 0 -(4)
and are normalised such that asymptotically they are
u (1) > — 5 sin (kr+8y),
1 .
w (r) = s sin (kpr + &), | «w(5)
From the two equations (3) for u) (r), we readily obtain
du; duz 2 R .
“og T | =k - A) “‘j;) uy uy dr, ~(6)
> Ris an arbitrary radial distance,
et us take two free-particle solutions
v1(r) == '
1 (r) oy sin (kyr+ &)
|
v =
| 2 (1) sin 5, sin (kyr + 6,) (7)
ation obtained by putting i/ (r) = 0in (3).
the equations for V1 (r) and vy (1) we obtain as in (6)
dy dv, 2 £
2
== -u—=| = p2_ -
[ 2% T U (ky ~ky) j;) U1 vy dr. .(8)

action (7) from (8), using (4), (5) and (7) and limiting g — %, We get

2 2 pe ‘
4200 & ~ by cot ) - (42— 4 ]O (41 3~ v, wy) dy .(9)
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On defining the “scattering length”

ab
1y ...(10)
=== Li .
. ey l,"}) [k cot & (k)]
We can write (9), on limiting ky — 0 and denoting k; by k,
..(11)
kcotd = —l+ék2,
a 2 5
oo .(1
where b=2 J.O (vov—ugu)dr.

f the potential.

where U(r) is
n the energy

The factor 2 in (12) has been introduced so that b (or rg) has the meaning of the range 0

From QS) and (7) it_ is seen that the integrand above differs from zero only in the region
appreciable. In this region the wavefunction u(r) will not depend very much ©

i1 UM 1> > k. .
- We shall therefore make the approximation of replacing u, v by u, vo (for zero enﬁergy\)'m j(AZ&Z ie..
shall take the first two terms in power series expansion in k> or kcot & : LE ¥ Aty &

Ny Ay + %€ 71
ErsloCent s £+2—° aroy oy ~RXT S e M=
where , ro = 2 ,[: 02— ud) dr. .(12)

is defined as the “effective range” of the potential V(r). According to (5), and (10), the zero energy £0 (n
has the asymptotic form ‘

up(N-=v @) = kLl,n}) (cos kr + cot & sin kr) ...(13)
=1 -—L .
a

1

By the equations (5) and (7) ‘002 - ug' vanishes outside the “range” of U(7). .
So, both rg and a are determined by U(r) that they are in sensitive to the exact form of U(7) but depend

only on some integrand of U(r). . o Dl
(1) For K- 0, we have from (2) and (10) J’j Yo
-~
6= 4nd WS I
k” (1 +cot” §) it % AL
(2) From thue expression of §;, we have & for k — 0. - N
o0 Z N/ ,—',i./ Y
a =] rue e dr o e as)
&) -r'.;:)
-where ug (r) is normalised by the asymptotic behaviour and is different from (13) X
ug(r) = Lim sin (kr+3) = (r—a)cos d ...(16)
_ k—0 k
where cos 8 has the value between 1 and -1 . P
If we apply Born approximation and if it is valid, i.e., ug is replaced by the field free solution p & \b
rN(r/2kr) J sy (kr) = (1/k) sinkr = r as k— 0 DRV
Then (15) becomes . e\

a =,j: un Fdr. ey Lan
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i
hu'”

ce the followihg exam
(3) The sign of ‘a’ depends on U(r). We take the folle

Consider a potential well —BJ- re R
(l (r) = ()l r)R

ple for variation of ‘a’ with ¢,
(r)

ITE = - f y> 0, is a discrete state, then

dr

—d:-Yz)"rtr) =0; r>R
dr”

Asin (VB2 =Y r} . r<R
so that uy(r) = P r>R
The continuity condition at r = R gives that e

an (VB*-Y) R} = =

. is seen to be the follo
The condition on BR for the existence of 1, 2 or more :nscre eiatales ds0e
For only 1 discrete state, 5‘ n<PR<3m.

(19
wing :
5
For only 2 discrete state, dn<BR<Imetc.

Consider now the scattering U(r) in (18), the wave-function uy can be expressed as :

[é+k2+[32]uk =0,r>R,
2
dr

. ﬁ;+lc2 W =0, r>R (1)
o dr

uy(r) = Csin (VB*+4) r), r<R

= Dsin (kr+6), r>R (21
Apply continuity condition at r = R

kcot (kR +8) = V(B + &) cot (V(B% + K*) R)
or kcotd = X1an (V(B* +4%) R} tan kR + V(B* + 4%

2 .5 1402 2 ~22)
tan {V(B“ - k) R) —Ew/(ﬁ + k") tan kR
By the equation (10), a comes out to be

(20

(22)

a=R- é tan .
Thus the scattering length a vanishes as B — 0. As BR increases from
’IMEs negatively infinite. The cro,

0, a decreases. As PR — 11/ 2,2
ss-section & becomes infinite as BR
energy.

— /2 and has “resonance” g
'he range ry can be calculated for rectangular potential well as follows -
rom (21a) and the U (r) fork— 0, r — oo jp (13), we get

uo=(1—£)s'~"& 0<r<R

a |sin ﬂR;
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and with (13), for vy, we have from (12a)

0= 2R~ 252_+3R [l_gr( 1 __R__] el

tan BR 2

IfBR=[n+l Ttn—o 3a B B A BR : O'in
_ 2 )7 =012, . astands to + o and (24) simplifies and the total cross-section

terms of a and ry is

2
G = 4na

1+a(a—r0)k2+[%ar0]k4

11-17. SCATTERING BY A PERFECTLY RIGID SPHERE

A igi .
| perfectly rigid sphere of radius a i represented by the potential

o for r<a
V(r) =
) {0 for r>a

2

The wave function vanishes fof r<q ~=n~
The Shoredinger wave equation (radial part) for > a [V (n = 0] is

19
B2 -

2 or 2
Substntutmgg = krorr= é’we v
% “ dE,[éz auséé)) [g -l(l+1)] w® =0 (1)
Further substituti _u® -(2)
in (1,)uweegreju o "0
2j§v+¢d§ J@-(1+4]]u=o -3

This is the Bessel’s equation of order | / +%J Its general solution is linear combination of Bessels
function J; 15 (§) and Neumann'’s function ' N; 41,2 (). The solution N /2 is not satisfactory since it

diverges at § = 0 ; therefore the solution of (3) is expressed as
' n
v = '\/ (5 ]Jz+ 172 €)
where 'J [ JIS a constant chosen for conveience and it does not affect the solution of the problem.
v (§) n\J1+12 )
u €)= NE " 27 v
Now u; (§) = ji(E) in the spherical Bessel’s function, i.e.
N n
i@ = ‘\/ [E ]Jl+ 128 . . -(4)

A
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| i . ns are defined as
The spherical Neumann's functions o \/ T hpond ©
€ =01 28 .
)
; 1) is expressed as
Therefore the general solution of (1) w=AjE©+BnE) (6
' &
where A and B are constants. \/ 2 i [ B % )
= o0, Ji+1/2 = [n:é
Fort _ sin(€-1%2)
Lim Jj (5) = V[Z%]UHI/Z (5)]5 — o0 -" ;; .“(7)
T cosE-im2) |
Also Lim @ = 3

. . t
Substituting A = Ccos & and B = — Csin & in (6), we ge

ur = Ccos &j; (§) - Csin g " @®
= C [jy (kr) cos & — ny (kr) sin &/]

2 -
‘ : _thnr—a,thew )
This equation represents the solution of wave equation for r>a ave f“"cﬂon
!_.V:’"Shes' w(r)=0atr=a;
th uation (9) gives .
en eq OF: 0 = C[j; (ka) cos ;- n; (ka) sin &]
: 5 = L4
B - tan oy = ny (ka) 7 ...(1())
~ This equation gives phase shift 8 for /" partial wave,
i’ (ka)
From (10) s:’n25/ =3 [ 2 ~(11)
Ji” (ka) + ;" (ka)
The Scattering cross-section forl & Ppartial wave is given by
.2
o = 4—;: (2/+1) sin2 o = I (2?{+ ) 2jl > +(12)
k K i+
The totat Scattering cross-section js
.2
7
Oroal = — X @/ +1) 'JI‘—
3 2 3 -(13)
| Jtny
From pu_g equatmn the cross-section at all energjes may be evalyated
Now let s discuss the fo], iti
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.2
Sin2 8[ = M‘_ j12 (ka) {__ﬂ@f:l___—‘]z (15)
i T =l a-nt@+!
- : Ji ka)+n (ka) nt(kay L@-D! o
This equation shows that ip 1 ‘ i : . d consequently the scatte
is prominently due to s-waye ( OW energy limit §; decreases rapidly with /an

Equation (10) gives ! = 0) and hence is isotropic.

- ] 2\ jslka
ans, < 100) _ ‘\][Zka}mz( )

SNy

-1 (Zka)']" 12
- J1+1/2 (ka)
I+1
For s-wave (= 0) -1 J1-1n (ka)

2 )
tand) = — J1/2 (ka) _ \/(a)sm(ka)

= = — tan (ka)
J-1/2 (ka) \/ g
. (;t—k; )COS ka
ence tan 8 = - tan ka, , .
...(16)
| b = ~ka
The total scattering cross-section for low energy limit is
4n .9 4 . 2
°totaz=[—22(21+1)sm 6,] = — sin S
¥ =0 'K
= =% sin’ ka, ke <<0
k .
4
= 2 (k) = 4md” (17)
k .

Classically the scattering cross-section is T a° only. quantum mechanically the cross-section is just 4

times of classical expression for the same radius., Thus for low energy particles the cross-section is 4 times
the geometrical cross-section of the rigid sphere.

(2) High Energy Limit : For high energy limit ka > > 1 for fixed !
Substituting the asymptotic forms of j; and n;, we get

sin” 3, = sin” ka, | << ka ..(18)
This indicates that the phase shift oscillates rapidly between 0 and 7 ; but this is contrary to
observations. For infinite potential and so for large k, the phase shift is simply ka if | < < ka. Thus assuming

—\/2 .

iz €)= e sing
n _»\}i

and 172 €)= - cos &

* Whenf -
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m

for which [ =0 to ka, then h, tog . %
that only those waves contribute to partial waves
Cross-section js given by

2 .2
4 ¥ @+ 1)sin’ ka = 4ma’ sin’ ka
Orotal = ¥ 1=0

2 In high energy limit the avera
We note that Ooral Oscillates rapidly between 0 and 4nta”. In hig 8¢ ¢

. h . . zka l roSs*secli
irections, which is sin = > He
is obtained by taking the average value of sin’ ka over all directio 2 Hencey,

2 8t
Otoral = 2 L .
' -section is twice the. geomery;
Thus we note that in high energy limit the scattering cross-sectio

: f ka, the diffrer. o5
The reason for this anomalous result is the shadow scattering. For finite value o , the fﬁacuon ar

e
tonis neary, ounz"g]n,
sphere in the forward direction actually takes place and the total measured cross-section is neay Y 2mg® ¢

1118 SCATTERING FROM A SQUARE WELL POTENTIAL

Let the potentja function for an attractive square well be V()
represented - f

V) =4~ 12 fOli r<a (1) B

0 for r>a ' ol--_ _a
The radja] Part of the wave function satisfied by s-state (! = 0) is "{\
G AR e o o)
r2 8r ar h2 . .
Su’bstituting R(r) = ru (. | (3)
we get -di;‘+—27'” [E-V()]u(r) = o,
ar” #

| -Vo —\j

Using potential function characterised by (1), equation (4) Fig 11,12

Comes gl
du

B Valu () = 0 o r<a
aur” f .

L4(), 2m

+=-Eu(r) = 0 for r>gq (6
dr? f? ©
ubstituting V[ ZMTE] = k and '\/[ _Zmi;&)_J_: ¥
] 38
1 (5) and (6) take the fory;
&
“7u+k'2u =0forr<g (8)
dr
d2
=0 for s, .0
r .
olutions of (8) and (9) may be expressed as
b= Asinkr for r<a

o
2% ™ . —
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Time dependent perturbation theory

The orientation ¢ in d; is irrelevant so we can integrate over it. Morcover, we
can now also jn[e;rate over d, since no further constraint is involved. This gives

4m.2n 2
= —"—pd dp €3dEV (137)
dN = GrmeP19P1 P2
Since pidp; = €;de;, we have finally (inserting the factors ¢ which we had dropped)
dN _ 8m*V?

= - _ge283de 1 dE (138
P=JE = (2mm)bcs 12 TH19E2 )

The transition probability is, therefore,
= 2h—"|M|2p~de, dey = dydn, (139)

where t; and 1, are kinetic energies of any two pions. The energy distribution of
the ™ is obtained by integrating over the energy of the other. But Eq. (139) tells
us that there must be an equal number of ©~ emitted per unit energy for the entire
energy range allowed by energy momentum constraint.

It can be shown that if the pions are emitted in the ! = O state (low energy)
and the interaction of the pions in the final state can be neglected, (which means
that they can be represented by plane waves) then the matrix element will have the
simple dependence M ~ 1/(€1€2€3)!/? as assumed. This means that any deviation
from the prediction Eq. (139), which can be called the “phase space spectrum”,
may be attributed to some interaction of the pions in the final state. In the extreme

case where two of the pions really are the products of the decay of a particle which
emerged from the original reaction, there would be a very strong deviation from
the phase space spectrum. As an example, we may have

tt+d->o+p+p
L, (7t + 7~ +7°)
In a bubble chamber, only the 3 pions are seen but from their energy spectrum one

can infer the existence and properties of . A very short-lived particle such as the
@ is sometimes referred to as a resonance.
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Chapter 26

The semi-classical theory of radiation
and the Einstein coefficients

26.1

Introduction

If we have an atom that is in an excited state and so is going to emit a photon, we cannot
say when it will emit the photon. It has a certain amplitude to emit mc photon at any time,
and we can predict only a probability for emission; we cannot predict tbe future exacx]y.r
This has given rise to all kinds of nonsense and questions on the meaning of freedom o!
will, and of the idea that the world is uncertain..

— R.P. FEYNMAN 1n Feynman Lectures on Physics, Vol T1i, p. 1422

J i ion theory which

- Chapu‘—l‘:’ e{f‘;‘;{::;_::i? zgc::ci)emmu?iet:‘:::ll‘mmagngic field.
o cmigart uzz;:?c;t':: t},\is :hapter is a curious mixture of classical apd q\_xamum
T.he meol’)’h,ll)l’:«ter ie. atoms, are assumed to exist in discrete (guasa-st_zauonaxy)
. t: el'ec;n.)magneﬁc radiation with which it interacls.' is desqnbed c\g-
sFaleS. - i mi-classical theory of atom—field interaction will be dxscxfssed in
coa Th‘;'si\ will enable us to calculate probabilities of absprpnon anfi induced
Sec_. 2‘6.3 Tm be mentioned that the semi-classical theory is msufﬁcngm o dg-
em}ssmn. It may eous emission of radiation because m; e\ecn:omagne}xlcl Sje‘d is

scribe the sl)on.li:;‘ll - the fully quantum theory of radiation, which w‘e will discuss

dci(k:\nbeei::ta::;m yd‘escribes the SPONtaneous emission automatically.

in the n s

i i ] hi ould
An ingenious idea of Einstein enabled him to obtain a relation which wou
ing

w lCh Spoﬂml 1SS The \dﬁa as bﬂsed
] eous emissions ‘ake p\ace. : W
delem\ine lhe rate at h g

; it o :
o considgration " mbaugl:r‘\:\g‘;lll:\)vr.“g‘nstz in introduced cocfﬁCi*z_“‘§‘ “'ha);‘s‘oare
tant radiation mu§t 0 e: coefficients, which described 'l‘fduced e“_“s.s‘zln;r um?:\-t
v g pB RS mission. In Sec. 26.2 we will give lh§ ongu‘\mefﬁc‘ems'
tion and spontaneous ; b eave rise 1o the relation between .dxf(eren g
o (SRef' l\)»:'1wll (l;;sciss the atom-—field interaction using the sem

In Sec. 26.3 we

=%
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theory and will denive expressions for stimulated emission rate and stimulateq
absorption rate. In Sec. 26.4 we will use the Einstein relations to calculate the
spontaneous emission rate and hence the lifetime of atomic states. In Sec. 26.5,
we will discuss the selection rules governing the transitions.

26.2 The Einstein coefficients

Figure 261 The rwo
staes of an oM system
The rraesanon fequeacy o

@ = (5K ) /A

Sumulatad absorption

Spontanecus emussIon

Sumulased cmsssion

Figure 26.1 represents two of the energy levels of an atomic system corresponding
9 e

ho = E3- E

|
l
i'
!
l—l_—fl

to energies £y and £ Let V) and N: represent the number of atoms (per unit
volume) in levels 1 and 2 respectively. An atom in the lower energy level cap
absorb radiaton and get excited to the level E;. This excitation process can occur
only in the presence of radiation. Such a process is known as stimulated absorp-
fion or simply as absorption. The rate of absorption would depend on the energy
density, u (@), associated with the radiation field corresponding to the frequency
E: -E 1

T (1)
The energy density u () is defined such that u(®)d® represents the radiation
energy per unit volume within the frequency interval ® and ©® + dw. The rate of
absorpuon would be proportional to V) and also to u(®). Thus, the number of
absorptions per unit time per unit volume can be written as

N B)u(w) (2)

o=

where B;: 1s the coefficient of proportionality and is a characteristic of the energy
ievels.

On the other hand, when the atom is in an excited state, it can make a tran-
siion 10 a lower energy state through the emission of electromagnetic radiation;
however, in contrast to the absorption process, the emission process can occur in
two different ways:

(1) The first 1s referred (0 as sponraneous emission in which an atom in the

excited state emuts radiation even in the absence of any incident radiation.
It s thus not stimulated by any incident signal but occurs spontaneously.
Further. the rate of spontaneous emissions is proportional to the number
of atoms in the excited state; thus if we represent the coefficient of propor-
vonality by A;; then
MAz (3
would represent the number of spontaneous emissions per unit volume per
unit ume (o the lower energy level

1) The second is referred 0 as stimulated emission in which an incident SiB“
nal of appropnate frequency tnggers an atom in an excited state to emit

:o 3 A’()m-ﬁt’ld ""eraC"‘(”!

581

radiajq
Ponion;l.(gnf e transition 1, the lower
the numbye ¢ energy density of ihe radiag
, T of stimulateq " iati
given by 1SS

energy leve] jg direcily pro-

on at the
ONS per unit (i, f“‘flUC"fy s
€ per unit volyme would

The quantitjeg Ay, B Nebau(a)
determined by o 2.1 B2 are known g i ;

- the atomj¢ system, Instein coefficignys and
€quilibrium, he

Number of ypy, :
- ard i
Wnward transitjong. Thus, we may w::ensmom st be equal o he

)
are

number of 4o,

MB =
. 15124(0) = Mya,, +NaByju(w)
ulo)= o Au__
WMBi2- B, ©

From Boltzmanp’g law, we have the fol

. lowi : :
ulations of twe levels at temperature 7- Wing expression for the fatio of the pop.

N Ey~E
N =P [-k\'} =exp ki
where k S . o :
B represents the Boltzmanp constant. Thus, we may write
u(0) = -&_
Byjexp (hay/ksT) = By 0

Now, according to Planck’s Jaw i
YOW, acc the energy densit iati i
nlney el el r}g)y ensity of radiation (at thermal equi-

ho? 1

"R o/t <1 ®
Comparing Egs (7) and (8) we obtain!
By =B, = B (say) 9)
and
Ay he?
B—g, = o (10

Thus, the probabilities of stimulated absorption and stimulated emission are the
same and the ratio of the A and B coefficients is given by Eq. (10). It is of interest
to mention that at thermal equilibrium corresponding to ordinary temperatures
(T ~1000°K) the spontaneous emission rate for optical sources far exceeds the

stimulated emission rate (see Problem 26.1).

26.3 The atom-field interaction

In order to calculate the Einstein coefficients we consider an atom in the presence
of an oscillating electric field given by

£(1) =e€ycos ot

1If the levels 1 and 2 are g, - and g;-fold degenerate, then Ny /Ny = (g1/82) exp (ha/kgT). By =

= ho’ /2. i

B:lesz/xa) MAﬁzel#:s;hmmed/:;h an electromagnetic wave will be of the for,m € cos (o — k)

howm ?andnuon in the visible region, the wavelength associated (~ 5 x 107* cm) is much larger
ever,

aan
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Dipole matrix element

Semi-classical theory of radiatiop

which is switched on at 1 =0: & represents the unit Vector along the directjop
of the electric field and the oscillation frequency o is assumed to be

fesonant frequency a,, [=(E-E)) /] i
2 (o state 1 (see Fig. 26.1). Now, the i

electric field is given by

H'(r.t)=gér =q&o (€.r) cos axr
where g(> 0) represents the magnitude of th
sent the Hamiltonian correspondin
eigenfunctions of Hy belonging to

(12)
€ electronic charge?, | o Hy repre.
g to the atomic system and Jet Vn denote the
the energy E, (= ho,):

HOWH = EM es hmn‘Vn

(13
Our objective is 1o solve the equation
¥ (r,
ihﬁa(:.—’)- =HY = [H0+H'(r,l)] ¥ (r,t) Ry
Following the approach developed in Sec. 25.2, we write '
¥ =Y Gi(r)emmiy, () (15)
n
and obtain [see Eq. (9) of the previous chapter]
_ dC, y )
lh? ——-;CR(I)H_M (t)e‘ml d (16)
where
He (1) = [y (r) H'(r,t)y, (r) dt = (s|H'|n)
= 5"&’8‘ (s]r|n) [e™ 4 e '] a7
Substituting for {' (r,t) from Eq. (12), we get
LdC 1 - (. bl
= = 55°>;D‘"C" (1) [elamon | it o] (18)
where
D,, = %P, (19)
and
Pou=q [ v, (t)ry, (r) dr = q(slr|n) (20)

1s known as the dipole matrix

element. We assume that at r =
state y,, i.e.

0 the atom is in the

G(r=0) =1
Ca(t=0)=0for n#k

than atomic dimensions (~10"*cm) and we can use the value of £ a1 p —
obvious from Eq. (17) where the atomic wave functions

@n

0. This is immediately
are almost zero for r > 10-8¢m and since

.3 Arom-field interaction
203/

Figure 26.2: For large values
of 1, the function given by Eq.
(23) is a very sharply peaked
function of © about ® = 0.

g
Equatiop ( 18) re Tesents g ;.. A1 -
imation ye replace ¢ A infinite sy o “oupled equation, adsis
(1) by C, (0) o the right hang side of 353 irst approy
md(’, ofEq. (18) giving

ar = ;&)D,. [eu'ﬂn‘mu‘(‘@‘_w,]

C’(’)"Ci(0)=-i£oD t‘(%ew_l
B Tagrg

(!M‘—U.l ~} . " y
04 - )

or, for s # g
G = _‘fﬂpn ¢Outo2 S0 (Oy + @)r/2

2h (04 +0) /2
+ ¢tl0g—)/2 Sin(@g — O)r/2

(04 -0) /2
It can be easily seen that for large values of , the function
Sin (@ - ©)r/2 @)

(0% - ) /2

is very sharply peaked around @ ~ Oy and negligible ev
26.2). Thus for states for which @y is significantly diffey

22)

erywhere else (see Fig.
rent from ©, C; (1) would

(wak — W)

sin(wex — w)t/2

an 1 i d by the
iti h states will not be stimulate

igi d transitions between suc ; : g

Pe Fleghggbizy This implies that in the summation app-e:;nng on th:d c'io ‘yan[0

made?lE ‘ (iS) we need only consider those states which correspo Se

side of Eq.

i Bk, tive; thus it

. wiﬂ rocess, E; > Es and hence @ (= -—r‘)ls nega vlhe e

[n an cmission Process, hand side of Eq. (22) which contrbues. On -
anE < E, and hence @ is positive a:d m:m’;
e id ‘hich con ]

i fEq. (22)w ‘

¢ right-hand side 0 s i

me that at ¢ om §

mdassy (:IE:—E;}/ .

is the first term on @e right-

hand, in an absorption procesii]

it will be the second term ont an

v consider the emission of radiation i b
i ;s( Fig. 26.1). We also assume o

in state 2 (see Fig. <0

. is given by
ition to state 1is gl
b' ly fOl' l.he uanSl“
lhe ploba lh
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584 We osinmt Thoal Theae W a Conhnuiond s bhoeen Mg
Spec b ! "f"‘]f" and had Mhewe b3 hOC (e m 2 "
Probability for , D& sin (=23+9) ¢ 4
stimulated emission |G (2)]" = e SCTE

Polamsarn vecko
of LR Comwnt’

(- -)- Thw ¢

Wewddw Aeprasents

i ili imulated emission of radiation. In
Equation (24) represents the probability for stimu . ‘
deriving this equation, we have assumed that |C) (t)lZ < 1; thus the result will be

valid when either
2 2
(D+‘€‘”) <16 (D”E") J(@-on)’ <1 @5)

h

Dt Yaoda e o Anrg tjA more accurate result for a two state system will be discussed in Problem 26.8,

P»U\ W‘.‘t VO!"A D

R N
s )
'LI'\A ‘0+jw‘ i‘-\'np’n
% Nr B
o Xn e WA
4 Xa

A, &
ik inFep® )
Do ?

A Now, the intensity of an electromagnetic wave is related to £ through the rela-
tion (e.g. Ref. 4, Sec. 19.5). l
1= ec & (26)
where € is the dielectric permittivity of free space and c is the speed of light in
free space. Thus
G 1 - 1 [sin (221) -I
I ()] = 2 ,h‘l’ﬂ €oc o)—‘—gl
We apply this formula to the case where there is a continuous spectrum of fre-
quency® and there is no correlation between the polarization vectors of different
components (as ip U," case of black body radiation). If u(®)d® represents the
radiation energy per unit volume in the frequency interval ® agd ® + do then 7
should be replaced’ by cu (®)dw and the expression integrated over all frequen-
cies to obtain the following expression for the transition probability
1 — sin(n)—mzl)r/zJ2 \
Fg:——D'/ua)[% do 28
I Zsohzr 12° [ u(w) (©—om)/2 (28)
where the bar denotes the averaging over different orientations:

ID12* = g2 |(1[r|2) &% = ¢ |(1 || 2)|2cos78

27

=L 1am2P = Lo

because
—’9 _ 1 X r2x [ 1
cos’9 = ‘G./o- /0 cos” 0sin8d0d¢ = 3 (29)
Assuming that « (@) varies much slowly in comparison to the quantity
sin(@ - wy)r/2]2 28
o] o

we replace u (w) by its value at @ = @2 and take it out of the integral (in Eq. 28)
to obtain

£ 1 5
* T~ —— |Pi)u G
6Eo,l2, i , (‘DZI) (3”
4
One could also have an interaction of a near monochromatic wave (as in a | i
aser) with an ato

ha\':ng a broad fnq@q Spectrum. This is discussed in Problem 26.10. i wom

The energy density associated with A monochromatic field is //c.

; Wil a ‘
© i, Ut vediobirs 2ntrgy Clan it volmepoecielid 1 2 b
Mo nochomahc .;—Ld& ok ’f‘“‘iw’“‘ﬂ o I JrvEN Y Uo="9 o)

26.3 Atom—field interaction

Transition probability

T
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where
e ( 2 400
G:/[w _ sin’E
I (on—w)2 ““’—2‘/ zr 48
=2m -
Thus (
- T [Py
rz'—g w2 “(@u)r=Pr (say) 32)

'I"hc above expression shows that the probability of transition is proportional to
time wi =_= 2 i

.e .wn.h B (-. oo I.Pul u(um)) representing the proportionality constant.
This lmmedla.l.ely implies the radioactive decay law, because if there are Ny (z)
atom:f» '(pcr unit vo!umc) in state 2 at time r and if —dN; represents the number of
transitions (per unit volume) in time dr then according to Eq. (32)

- N =Bdr (33)
the negative sign implying that N will decrease with times. Equation (33) imme-
diately leads to

Na (1) = Ny (0) e B (34)
which is the radioactive decay law with 1 /B representing the mean lifetime of the

state.
It may be noted that Eq. (32) predicts an indefinite increase in the transition

probability with time; however, the first-order perturbation theory itself breaks

down when Iy is not appreciably less than unity. Thus, Eq. (32) is valid for

times for which =

Br<1 35
If the lifetime of the state is ~ 10~%sec, then B ~ 10°sec~! and we must have
1 < 1077 sec (36)

However, the large time behaviour® is given by Eq. (34).
It should also be noted that in our analysis we have assumed the quantity given

by Eq. (30) to be very sharply peaked around ® = @, for this to happen 7 should
be large enough so that’ v 3

[{0),3]
or | ‘
1> — 37
o
Now in the optical region 5
) ~ 107" sec

d as: If the state has noi made a Tansition upio ume 7
;{lwtl.\beﬂdtﬁwnwhmqu (34) follows
of (30) occurs &l @ = O and the first zero a¢

¢ jon (32) may, therefore, be B
the probability that it will make a transi
um:'fhn follows from the fact that the maximum

=0t}



Einstein’s B coefficient

, O

Semi-classical rheot_; of radiation
‘\.‘ Y L
then we must have
13> 107 ¥ sec
Thus ¢ in Eq. (32) should satisfy Eq. (37).
Returning to Eq. (32), we get the following expression for the transition prob-
ablity per unit time (which we denote by w»)):
bL8 )
ny ~ —— |Pr2| u(w2r) )
way BeofFl 12| u( _(38)
If there are N> atoms per unit volume in state 2 then the number of stithulated
emissions per unit time per unit volume would be given by R

n b \’
Wy, = Noway = N = |P2| " (2 -
21 = Naway 2350#' 12’ (@021) & (39),
Comparing the above equation with Eq. (4), we 0btain 9k
P_a?( & 2 VNG
32,23"5?=§% ﬁ:_so |/ ¥iryadr|
2 5 e - ,
= 48.0¢ (1 r2))? (1 40)
where N
.
= dneohe - 137 1)

represents the fine-structure constant.
The corresponding expression for stimulated absorption is obtained by starting
with the first term on the right-hand side of Eq. (22) and proceeding in a similar

manner. The final expression is identical to Eq. (40) except for an interchange of
indices 1 and 2 and since
2
= ’ f yiryadr

Bj2 =By,

-

(42)

/WﬁrWIdr

we gel

consistent with Eq. (9).

26.4 Spontaneous emission rate

Einstein’s A coefficient

Using Egs (9), (10) and (40), we get the following expression for the A coefficient

5

P4

4 o
A= -0—
30'('3 )

/‘Uir%dt
For the 2P — 1§ transition in the hydrogen atom, i.e. for the transition from any
oneofthe (n =2, = 1,m= +1,0,—1) states to the (n= 1,1 =0,m = 0) state, we

get (see Problem 26.3)
S\ L
:2’(5) ag (44)

independent of the initial value of m; here ag (= 2, ~ 0.5 x 10" '“m) is the Bohr
X me=
radius. Further, for 2P — 1S transition

’ / YisTyopdt

\
\

I e
hw:(‘*'l'])E = - —
4 "“8a

[}

1.5 Selection rules

Mean lifetime

e —

587
or
W= %‘.a
On substitution in Eq, (43), we - 0} (45)
# c
A= (‘-(I) %26)(10859,(;“| v

i t of atoms undergoing spontaneous transitions in time
N dN; = —ANdt (46)
&1ving once again the radioactive decay law
N2 (1) = Ny (0) e~
Thus the mean lifetime of the state is given by
1 E
‘E:I—‘:belo 9sec (47)

In Eq. (46), dr should be small enough so that Adr < 1. Equation (47) tells us
that the mean lifetime of the hydrogen atom in the upper level corresponding to
the 2P — 15 transition is about 1.6 x 10~* sec. Transitions having such small life-
times are referred to as strongly allowed transig@ss. One can similarly calculate

lifetimes for other atomic states,

The spontaneous emission rate will give rise to finite widths of the spectral
lines which can be estimated from the uncertainty principle

AET @8)
T

In practice, the observed widths are much larger because of other factors such as
Doppler broadening, collision broadening, etc. B

We should also mention here that the A coefficient for the 2§ — 1S transition
is zero. Such transitions are said to be forbidden transitions. .

26.5 The selection rules

Whenever the quantity
(X f yyryidt
(also written as €- (f|r|i)) vanishes, the transition probability is zero [see Eq.

(24)] and the corresponding wransition is said to be forbidden (in the dipole nlp
p;oximalion)g' the subscripts i and f refer to initial and final states respectively.

Inc level: ed in the | A fi

n contrast, levels used 1n aser transition are such that the upper level has a very long lifetime
8 :

( 10 3 o 10 \L‘C) They are referred 10 as metastable states The \nengl.h of an alomic transition

is usually expressed in terms of the f-value defined by the equation
_2mey
T3 0h

~ 1 and for transitions from metastable states f~107-10

2

[Da|” -
6

For strongly allowed transitions f :
9Gee Problem 27.1 for higher order transitions.
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Selection rules

Semi-classical theory of radiation

If we assume that the electron moves in a central field, then e iy lar part of the
wave function will be of the form Yim (6,9); thus, the initial and final states Y’i“

be given by IS o\ \
Vi = Rut, Yim, (6,9) }}‘/I,’.}'\\/&’i\‘ \ '(é)
\szRn,l] Yl,mr (9v¢) ‘ ) t 1, TO4
. Now, it can be shown that (see Problem 26.2) y
1/2
. _ (I,'+m,<+l)(l,—rm+l))
Peram=e [5"-"“ (MGve ) .
/2 \
Ui+ mi) (i —m) \'
e (T ary) e e
and 0.4 i b
B ) . (li+mi+1) (Li+mi+2) 12
A i =
Sy (xtiy)ydt=G _?’l,.l.rl ( 2T 1) @1 3)
(U m,-s (l,-.— m;—1) 12
&, 1. LG L) 5 e i
£ 01, 41 ( @i+1) @2h-1) Bm_/.m.tl (610}
where
G= /r‘Rnﬂ/ (r) Ry, (r)dr (52)
0
where Ry pepresents the radial part of the wave functi ] i
tell us tha for a transition to ooeur, we st have ons, Equations (50) and (51)
Al=1l;— ;= +]
Am=my—m; = (53)
and
Al = l! - I‘ =+1
Al?l:"v—m;:i] 54)

which are known as the selection ince spi

1 C rules. Since spin angular momenta are not in-
Aj=+1

as well. ! 9

Forthe Am =0 transition, the dipole moment vector

P=qfw}rw.-dt \ \y

| | 56)
is along the z—direction [because £, = (

e i Py= see Eq. ( .
Now, if we consider an oscillatory dipolc in the l:?dl(rigllon
P=poe iy | )

then at large distaces from such a dipole, th

the form toen g el ), ectric and magnetic fields are of

) Kpo i(kr~ar)
e=—-[ 29 . € i
( ) sl § (57)

26.5 Selection rules

‘igure 26.3: The vector k

presents the direction of
propagation of the emitted
rachation. The plane of the
paper is defined by the vectors
k and 2. For the Am = 0
transition, the polanzation
vector of the emitted radiation
¢ will lie in the k — 2 plane
with the intensity of radiation
maximum for 8 = nt/2 and
zero for 8 = 0.
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}{: B ((ka() ; [,i(kr w)
‘, i) sin P (58)
(Where 8 represents the
‘ S polar angle that i i
2 ;  the ! T makes with the z-axis
ynung vector (associated with the emitted radiation ﬁcI: ) izs :\:Zn py e

by
S= 0)k3p8 S,mzecosz(kr—(m) s X
lonley " U7 F ) &%
Thus the electric field associated with thy

. /
! the el ' € emitted radiation will be |
Y i d wi inearl lar-
. ::lh :“cl:, 1:: czlet.mc vector oscillating in the plane defined by Z and the dfrz:u:n
i radiation k (see Fig. 26.3). Further, the intensity of the radiation

N

will vary as sin>@ (: 13-2\2), For ® = n/2 (i.e. for the emitted radiation propa-

gating along any direction which is perpendicular to the z-axis), the electric field
vector will be oscillating in the z—direction.

For the
my=m;+1
transition
P.=0 and P —iP,=0
[see Eqs (50) and (51)]. Thus
Py = —iP, (60)

The above equation implies that the emitted radiation will be superposition of
radiation from two dipoles oscillating (with a phase difference of ®/2) in the x—
and y- directions. Using formulae similar to Egs (57) and (58) one can easily if
k is along X and ¥, the emitted radiation is plane polarized along the §- and X-
directions respectively and if k is along Z, the radiation is left circularly polarized.

For k in any other direction, the polarization is elliptical. \

As an example, we consider the ' D, — ' Py transition (as in the case of the Cd

6438.17 A line). Since we have neglected spin, we consider only singlet states. If

we place the atom in a magnetic field in the z—direction, the levels will split up as
shown in Fig. 26.4 (this is the Zeeman effect). Using the selection rules, we have

e




Figure 26.4° (a) The Zeeman
pattern for the 'Dy — ',
transition. (b) If viewed L to
B, three lines are seen; if light
polanzed || to B 1s allowed 10
reach the film then only the p
components are seen and 1f
light polanzed | w0 B s
allowed to reach the film then
only the s components are seen

Zeeman effect

This is known as the normal
triplet.

Semi-classical theorv of radiation

(b)

ms=m;(i.e. Am=0) transitions plane
polarized ||to B

(p—components)
my=m;+1(i.e. Am = +1) transitions plane

polarized L to B
(s—components)

Viewed L 10B
[i.e. k along & (say)]

ms =mi(ie. Am=0)

transitions not seen
Viewed || 0B

(p—components)
li.e. kalong & (say)] | ™/ =™ % 1 (i.e. Am = +1) transitions circularly
polarized

(s—components)
Zeeman effect and the lines are known as the Lorentz

16.6 problems

Figure 26.5: The Zeeman
pautern for the

*Py21/2 = 28,3 doublet in
sodium. Notice that the
Zeeman splitting 1s different
for different levels [the
splitung is proporuonal o gm .
see Eq. (66) of Chapter 20].
The lower part of the figure
shows that in the transition
there are two p components
and four s components.

26.6 Problems

591
In the presence of spin-orbitinte

" raction of the form E(r)L s, the atomic state:
u.rc characu?nu:d by the quantum numbers l,s5,) and m; (see Problem 20.2) 'I'hb-
corresponding selection rules are ' o

Aj=041 ;.0
Al = 41 _ & ) 61)
Amjy =0 +1
However,

(my), =0~ (mj),; =0 ansition forbiddenif Aj = 0.
It may be noted that the transition Aj = 0 is allowed but Ji = jy = O transition is
not allowed. The Zeeman pattern for the 2Py, | /2 = 28y wansition (as in the
case of D lines of Sodlum) is shown in Fig. 26.5 (see also Problem 26.7).

m; gm;
32 63
# 2/3

2Py)y '_"'_" """"
1/2 -2/3
S L. -3/2 -6/3

812

Am =

Fine Structure Splitting

Zeeman Spliting

Problem 26.1 Show that for optical frequencies, al thermal equilibr
sponding to T

number of stimulated emissions.

ium (corre-
S emissi the
~ 1000°K), the number of spontancous emissions far exceeds
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Quantum theory of radiation

27.2 The hamiltonign
602 603
-h in the semi-classical theo,
. ’ tancous emissions whic : . - ry Now
automatically Ic.zdi ;“,:'::\nad ;“m manner through the Einstein cocefficients (see ‘
B e < we will discuss the properties of the cigenstates of the PA¥ = —inv.(Aw)
Sec. 26.4). In Sec. 2705 we S X hi - —;
l;:mlllnman of the radiation field and will show that l:C 5‘319r“ct:)‘:r2:‘:;35?0l:h(k ==ih[(V-A)¥ +A VY]
. ~ no S —
to a given number of photons for a particular mo.dcb o hat the ei y e h =
-al plane wave. Indeed, in Sec. 27.6, we will show tha igenstates of Where we have chosen the Coulomb . .
k““hahﬁ io ator (which are known as the coherent states) resemble the Thus b gauge in which V- A = 0 (see Sec. 20.3).
the_annihilauon oper. ~ : it el
classical planc wave for large intensities. In fact when a laser is operated much
bevond the threshold, it generates a coherent state excitation of a cavity mode. H = iA»p _q "
;.,,’m"). in Sec. 27 7. we will show that it is dnfﬁcull to give a quantum mechanical There are now two wa f m ' mp (7)
description of the phase of the electromagnelic wave- tromagnetic field classicallyys' ?hi};rﬁca:c:\?i;ubnf:; 'dThe ﬁrs.‘his o lhfm =t
Th : ‘ one in the previous chapter.
27.2 The Hamiltonian ) _ Cul"a:‘cr;’;d a:;d more powerful method is to quantize the radiation field and cal-
The Hamiltonian of an atomic system in a radiation field can be written as in Seclion: ;7 ;f:nn:ll;?’n“be};ween states of matter and quanta; this will be done
H = Ho+ H' 272.1) that th.e inleracu- - However, before we do so, we will first show (in Sec.
=Ho+H, +H (1) sistent with on term given by Eq. (12) of the previous chapter is con-
= Ha+ H, ‘\ . aborox _EQ- (7) under certain approximation which is known as the dipole
where H, represents the Hamiltonian of the atom, H, the Hamiltonian correspond- Pproximation.
ing to the pure radiation field, which is given by 27.2.1 The interaction term in the semi-classical theory of radiation
Radiation ficld 1 o P af . of
Hamilonian H, = / (€0 & +po - H) dt (2) For a plane electromagnetic wave, the vector potential can be written in the form
and H' represents the interaction between the atom and the radiation field. In Eq A =@Aqcos(k-r—r) ®)
(2) €0 and po represent the dielectric permittivity and magnetic permeability of where € represents the uni .

’ unit ot ,
free space, & and A represent the electric and magnetic fields associated with the and P 1 vector along A (denoting the polarization of the wave),
radiation field. For example, for a non-relativistic electron (of charge —¢) in a k= mﬁ
radiation field, we have = 9)

H 1 (g ReveH 3) wherc k reprcsems the unit vector along the direction of propagation. The condi-
2m ’ ! tion V-A =0 gives
since the recipe 1s to replace the electron momentum operator p by p + gA (see ¢k=0 (10)
Sec. 20.2), where A 1s the vector potential and V is the potential energy of the implying that € is at right angles to the direction of propagation, i.e. the wave is
electron. We can rewnite Eq. (3) as transverse. The electric field is given by
H=Hy+H ) oA
f=——=-efsin(k - r—wx) (1
where or
Hy = H, + H, where
) o =wA (12)
H, L +Vir) 5) 0 .
m ¢ Now
2 q
9 q .2 H =-=A-
H (A p+ - A3 P
Im PP A ZmA

m
; ; £
and H, 1s given by Eq. (2). In Sec. 27.4 we will treat H as a perturbation and _ 4co é[e"“‘ r-on) ik r-wr\l P

it : ¢ a2 T2
study the transitions between eigenstates of Hy. The term Jm A< appearing in the m

sy ; R sition is given by (cf. Eq. 17 of the previous chapter):
expression for H' usually represents a very small perturbation and hence will be e B )
neglected. Thus the interaction term is given by

. by afo . MrDin) e t0!
o Hip = (s | H' | n) = 5 (sl p]
H =+ 7 (A pip A) (6)

= + ("lf x\rp‘")(,~»(u)x'] (1Y



Quantum theory of radiation

where the kets  a > and | 5 > are cigenstates of the atomic Hamiloman H, and
represent the instial and final states Now

1 2
LR EY S LS

Simce atomis imensions are =~ 10 * cm and for opuical wavelength

S 5 \
& ~ 100 ¢m
( A )

we obtain (i the region of integration) ks € 1 Thus, neghgible error will be

.

ivolved if the exponential is replaced by unity” and the transition is said 1o be an
chectric dipole transition - 3 Very important case In this approximation

..*(""p ny~{sipln (14)

Now the kets | n > and | s > ar¢ cigenkets' of the alomi Hamiltonian H,

Hyln)=Eqxlnm) + hao, | ) (1%
Hy o) = E|s) =M |s) (16)
Furthet ;
Hy= L=+ V(D)
m
hus i ) )
[ 5l SR
‘v, M, b +\ lf"
L
: ([v.pal P *[’.fl.l'.'.!
2m
. (amn
MI‘-
! = (18)
p ‘hlr ’ll.‘
Heme - |
(siplm mrs;rH.~!l.r!n?
m‘fy. EJ|r n)
h
o . (19
s P
I
where we have used kq ~I\i.|ndwn|uualcufrq (16) and
e, ~ En - E
On substitution 10 Eq (11), we get
J& 00, -, e (20)
s H |n plsein)ie |

)

L -
o e———
matris ¢ st
AT ey gty lemds wy n vamshing s
f the nptsr-ﬂ‘ o ¢ e
: *:u:tm ke tikr oK thene w® «aul 1w ...nnp.nd w hagher ¢
» o » (1 Ene it
- ‘ of the somes
Probiems 1|

- and hoal dares
may wan the remier of some onfusion of sarion The wiial
we

aml
— wd | [ and sometimes by | @

27 3 Quannzation of the radiation field

605

R"[c) .:)t:):;c equation is of a form simlar ( although not rdentical) 1o that of Eg
previous chapter. However, for © = |y,

A = |0y after one carries out the

integration which leads 10 Eq. (22) of the previous chapter, one obtains I:cunuul

expressions for probabilities of ion and of S
gkl absorpti of emussion [see Eq. (24) of the

27.3 Quantization of the radiation field

We now develop the second method mentioned in Sec. 27.1 In this method, the
clectromagneic field 1s described in terms of numbers of photons in vanous states
We consider first a pure radiation field. In Coulomb gauge, such a ficld can be
denved from the vector potential A only, with @ = 0 and
VA=0 2n
In tnis gauge, the magnetic and electric fields are given by (see Sec. 20.2)

B=puwM=VxA 22)
and
£= —éé (23)
or

where we have assumed ¢ = 0 since we are considering free space. Subsutuung
for  and & in the Maxwell equation

® &€ (24)
UxH= 5,’ —&)a‘
wcgcl &:A .
Vx(VxA)= -tmgy

If we now use the idenuty” . \ -

Vx(VxA)‘—_‘-V\V»M'V'A:‘VA é

; seV-A:l)l.th“yobW“ . .
s Coaea | an
VA= c.‘ a!

3 28)

waort c= () (

presents speed of light in fre¢ space. Eg
:m:n::nllm wave u;uuon In order © solve

ngthoduft?“'“"“d‘m (29)

viaeV
-V (VA
Howevel (VA -
C.ﬂ“‘
c-ﬂ"'d“*“""dh
Lo o Canenin © (PA), 47 (A
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Quantum theory of radiation

27.4 Spontaneous and stimulated emissions
274 Spontaneous and stimulated emissions

We next express the vector potential A (an

611
‘N >~
radia;::nl;:\:ﬁ:“mmgu €quation for the system consisting of the atom and the
d hence the interaction term H') in terms ) 3w
of the operators @y, and @. Now using Egs (54) and (61), we get ih s = (Ho+ H') | W) .
12 The solution of thy b ; : s
h € above equation can be writte \
- z an : T as a linear combinauon of the
@) = (Z&;me) a () cigenkets of Hy, (cf. Eq. 15 of the previous chapter):
g 1
which is now 1o be considered as an operator. Using Eq. 38) we ge 1) = XC.. (1) e~ ™Wni/n \un) (88)
1/2 s n
A=) (fo’\l’Jun) [an (1) Aa. (1) +3 (1) A, ) Substituting in Eq. (87), we obtain
= \2
” : dC W, ,
1/2 - n — W/
=£( h ) Lal(t)e"‘"+ﬁx(l)e"“r]h (78) 'r'tn.\T,“THCn\e Wat /N )\ 1)
x 2epV o, _tc (”w —iWat /R 1 —iWat /R
where all the operators are in the Heisenberg representation (see Sec. 12.9). In the =Lt ne |ug) +H EC" (1) e ™ot /R | )
n
5 tation, we will have .
Schrodinger represen :of\ - where we have used Eq. (84). Premultiplying by (us | we get (cf. Eq. 16 of
A=Y ( h ) (o €™ +a, ] &y a9 Chapter 26) N
=\ 28V 0, i d’ =Y (o H' | ) ¢ Wm-WaktIn (g (89)
which will be independent of time. The interaction energy is t -
Now usi :
H = 1A<p (80) w using Eq. (81)
N B 12
9 e
or ) H' \uny = 1 (— %
Interaction energy q h 172 e . . mz)" 2e0Vay, (9Q)
' __ Al - ol Y - -
H = ;;(ZEQVM) lare™ ™ +aze 1e&p (81) (us)| (are™ "+ e~ %) pluy)
Now, the eigenvalue equations for H, and H, are
Hq | W) = E; \ ‘Pl) (82)
and

Because of the appearance of a and @) in the expression for H', the various

terms in (u, |H'| u,) will be non-zero only if the number of photons in | u,) differs
by unity from the number of photons in | u,). 1f we write out completely the

H lnny,..) = &z (n;j— ;) h(.o;l {ny,na,.om,.) (83)
Y 2

where | y;) and E; represent respectively the eigenkets and energy cigenvalues
of the isolated atom and | ny,n,,.

right-hand side of Eq. (89) it will lead 0 a coupled set of an infinite number
field with ¥ (ny + %)h(ol represen
A

of equations which would be impossible 10 solve. We employ the perturbation
theory and consider the absorption of one photon (of energy hy;) from the #h

mode. Further, if we assume the frequency ®; 10 be very close to the resonant

) represent the eigenket of the pure radiation frequency corresponding to the transition from the atomic state | a) to | b), then

ting the corresponding eigenvalue (see Eq. 72).
Thus the eigenvalue equation for Hy will be

Eq. (89) reduces to the following two coupled equations (see also Solution 27.3):
ih(% = Hi,eWM—W/he, () 01
Ho | up) = W, \ un) (84)
where ihd—cc!‘% = Hrhe_“w‘_wﬂlnc‘ (1) )
_ 1
Wa=E,+Y (nl + 5) hay, (85) where

and \ 1) =lainy,ng,.oomy, ..,

lun) =| i) | ny,m,y,.. My} =lisngng,.ony,. L) (86) and
represents the ket corresponding (o the atom being in state | i) and the radiation
being in the state | ny,ny, . nysas)s

93)

\2) =\binyna,oomy o ni =100 (94)
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represent the initial and final states of the system. Obviously, because of relations
like Eq. (115), H{, = 0 = Hj,. Further,

1 1
Wi=E,+Y (n1+§)hwx+ ("i+§)”“’f
A

- | ) (95)
w;v_ = Eb+ Z (Ill'f' i)hah‘f" (ni_' 1 + 5) h(ol'
"
Thus,
W) — Wi = (E; — Ep) + hw; (96)
Now

A 1/2
Hy=H,=1 ( ) & - (asn,na,. ., ...
21 12 m; zeovu)l 1 I

(0™ T +ae™T) p | b;ny,ng,...ny— ) (-
Ao\ .
-2 (vg) "l
4

172
. L & .
~2 (va) VA& (alplb) o
where in the last step we have used the di
replaced e =™ by unity (see Eq. 14).

pole approximation in which we have
If we now use Eq. (19) we get

(@ p|b) =2 (Es~E)(al r|b)

= —imwya(a | r| b)
Thus
. , ' 1/2
H = Hy,=-i (2!.’0V(0.‘) Wpa+/n; Dy (98)
where
" i
Do =q&-(a|r|b) = & .(a| p|b) 99)
[see Eq. (20) of Chapter 26]. We next try to solve Eqgs (91) and (92) by using a
method similar to that employed in Problem 2

i 6.8. We assume that at r = 0 the
system is in the state represented by | 1),1ie.

GO)=1, ¢(0)=0

(100)
On working out the solution one obtains
2 po 2
2 (0 sinQ't/2]°
IC2 (0)]* ~ (7) [\9’/2 ] (101)
where
1/2
_ | 2n|Da|* @,
Q = [W o (102)
and

;L 2 1/2
2 = [(0n - ) +0j| (103)

27.4 Spontaneous and stimulateq emissions
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For Qqt /h « 1, we obtain

2.
IC2 (1) ~ %“’;L [_“L“’Li)'/j]z

(0pa - @) /2
where we have

IC2 (1)) is neg
Equation (104
place$ £3
would get
Chapter 26

l;lrpppcd the subscript i and have taken into account the fact that
‘gxble €xcept when © » @y, and haye thus replaced ,, by .
. 2) 1;(:)11: same as Eq. (24) of the previous chapter provided we ne:
Y 2n /V.Eo. Using Eq. (104) and proceeding as in Sec. 26.4, we
an expression for the Einstein B coefficient identical to Eq. (;t(i) of

In a similar manner, if we consider the emission process, we would obtain

0P~ 52D 2 [Mr

(@50 —@) /2 (195
where the initial and final states | 1) and | 2) are now given by’
| initial) = |"1) =| biny,ny,...n;,..)
A i (106)
| final) = | 2) =| ayny,ny,...ni+1,...)

Notice the presence of the term8 (n+1) in Eq. (105). This implies that even if
the number of photons were zero originally, the emission probability is finite. The
term proportional to n in Eq. (105) gives the probability for induced or stimulated
emission since the rate at which it occurs is proportional to the intensity of the
applied radiation. On the other hand, the second term which is independent of
n gives the spontaneous emission rate into the mode (see also Problem 2713). 1t
may be noted that the spontaneous emission probability into a particular mode is

exactly the same as the stimulated emission probability caused by a single photon
into the same mode.

We next calculate the probability per unit time for spontaneous emission of
radiation. If we consider the emission to be in the solid angle dQ then the num-

ber of modes for which the photon frequency lies between ® and @ + dw is (see
Appendix M)

Vet do

= 107
N(0) dodQ = ——=- d@ (107)

SThis is justified because the energy density associated with an electromagnetic field is }€€q and
the energy density is also equal to nkw/V.
"We would have

ih‘!% =~ Hy e WM=WAC (1) ~ HYj e Ore N

and integration of which would lead to Eq. (105). Hoyevex. it may be mentioned that the equation for
C} (¢) would be a sum over states as discussed in Solution 27.3.

8The appearance of the term (n+1) is because of the relation \(n+l‘,ﬁln)]2 =
I\/n+l(n+l|n+|)|:=(n+l).
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Transition rate

Einstein’s A coefficient

Quantum theory of radiation

Thus, the total probability of emission in the solid angle d©2 would be given by
us, the (O

2 2
|Dasl’ gn_(gb_a-,w)i] @5 &7 d0dQ
U= Zheov (0pa — @) /2 o ‘/ 3
2 sin (Wpa — ®) ¢ 2] d
D, 3 sk b AL [ (108)
=z—’a|s;§'§lscs"““’~/[ (@50 — @) /2

tity inside the square brackets is
made of the fact that the quan ( . -
‘:l:ll‘:ar:pl:;e p::Sk::cf:nction around @ = . Carrying out the integration, using the

fact that Jam

2

n°x
[517 de=n

X2

we obtain ) 3
~1[ 4 ]m—zl(alrlb)-elzdnr
2n | 4ngphc | ©
Thus the transition rate is given R
19 2 aiplby-e? do (109)
win= 35 | e | s e 11 )-8
2 3
= L% jalr|b) 8 a@ (110)
2n | 4ngohc | 2

In order to calculate the total probability per unit time for [ht? spf)ntancous emis-
sion to occur (the inverse of which will give the spontaneous lifetime of the state),
we must sum over the two independent states of polarization and integrate over the
solid angle. Assuming the direction of k to be along the z—axis, we may choose &
to be along the x- or y— axes. Thus, if we sum
~12

[{a|r|b)-&|

over the two independent states of polarization, we obtain
P a2
Ga|r|b)-8*+|(a|r|b) 3|
=P} +P2=P*sin’@

where P = (a|r|b) and 8 is the angle that P makes with the z-axis. Thus in order

to obtain the Einstein A coefficient (which represents the total probability per unit
time for the spontaneous emission to occur),

in Eq. (110), we replace |(a |r|b) - &
by |(a|r| b)|*sin? @ and integrate over the solid angle dQ to obtain
1 2

(1)3
o P hc] S lalr b)|2[[sinzesin6d0d¢
2 3
q w
:a[r@]rz“""“’)'z (i
which is identical to Eq. (43) of the previous chapter.

27.5 Properties of the eigenstates of the Hamiltonian of the radiation field

If we substitute for gy (r) from Eq. (77) in Eq. (44) we would obtain

E=Y & (112)
A

e e

27.5 Properties of the eigensigtes

Expectation value of &,
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where

- hay \ /2
& =i (—& [me™ar — gye—tor) g, (113)
2e0V
and all operators are i (he

L Schrédi i i
the radiation field foowlict Inger representation. We consider the state of

- there are 1, photons in the A state, The expectation
value of &y, in this state would be given bl; -

s

nl’"zv---:"b---ig)‘|n|,n2,...,nx,...)

(i m)(ny | m)... (my | &, | m)
0 (114)
because

1]

. imlarlm) =0= (|3 | m) 1
Similarly

(m,na,..omy, .. Ifilm.nz.---.nxw--)
=(n Im)(nzInz)---(ﬂxlfil'lx)m

R
T (Ze%/) (m | (are™ " ~meaT) (gye~ 807 _gpemBa) | y)

_ [hom, 1
() (22

where use has been made of relations like (see Sec. 12.2):

(mlady |m)=/m+1(m |ay|m+1)=n +1 117
(m| @an | m) = /m(my |G | np— 1) =y, (118)
(m] axan |m) =0 (119)
(m.| aray, | m) =0 (120)

The uncertainty in &), A£y, can be defined through the relation
(a60)* = (&) — (&n)?

_ (hon 1 121
= (EoV) (n)‘+ 2) ( )

Equation (114) tells us that the expectation value of the electric field in the state
| n) (=|m,nz,...ny...)) is zero. Since the average of sine waves with mndon‘;n
phases is zero, we may loosely say that the state | n) does not spequ _thc phase
Some authors tend to explain this by resorting to the uncertainty principle
AEAr>h (122)

where AE is the uncertainty in the energy of the radiation field and Ar is related to
the uncertainty in the phase angle through the relation

Ad = A (123)
Since E = (n+ 1/2)ho, AE = hoAn and we obtain
AnAp > 1 (124)

9We say it loosely because it is not possible to define a phase operator which is real (see Sec. 27.7).
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= 0 and consequently the;

: tly known, then An ; Te
-H o numtl:; Oef g? cl’ltizn;hl:s:%flozvever. such arguments ax;eAnol ngo;ously cor-
is no knowledg: ¢ possible to give a precise definition of A¢ (see Sec. 27.7),
rect because it is not po dtates described by | n) do not correspond to the

Nevertheless, we can say that the

i h with a certain phase. .
cm;lcal el_ecu;c;mangn(tiulc s tice that the states | n) have a definite amplitude
eturning -

6), we nol i
(2han /eV)' /2 (m + 1/2)"/* for the mode A which is directly related to the number
of photons. ~

27.6 The coherent states one of the coherent states which are,

iation field to be in
We next consider the radiation e Sec. 12.5). We will shiow that whe the

g g Id has properties very similar to that
adiation field is in a coherent state, the fie 1 '

::f a classical electromagnetic wave with a certain phase and mplllude. However,
before we do so, we would like to discuss some of the properties of the coherent

the eigenkets of the operator @ (

state. )
The coherent states satisfy the equation

a, o) =0 | o) (125)
where o, which represents the eigenvalues of a, can be an arbitrary complex
number. In Sec. 12.5 we had shown that

1 o
2
o) =exp|—5|a —= | m)
) = -3l ]=0):l2 w

For convenience, we drop the subscript A and write the above equation as
a’l
o) =exp[-N/f2]) ——=|n 1
| &) =exp| /]);,—n!l) (126)

where N (: [a|2) represents the expectation value of the number operator N,,

(see Sec. 12.7). Since | H) are eigenkets of H, if the field is in the coherent state
atr = 0, then at a later time ¢, the state will be given by (see Sec. 12.6)

|‘P(l))=e‘~/22%cxp [—i(n+%) ox] | ) (127)

It is easy to see that
[¥(0)) = |a)
Further!?

(¥(r)[a¥ (1) = e'”);'):;'—l" O T (m 4 1)

n vVm'n!

. 2‘
— ot ~N o Ial .
i = (ot z - = q' el (128)
I
n the Heisenberg fepresentation, the expectation value of 7 would have been
(¥(0)ja())¥(0)) = (a]ad™|a) = "™
which uthcnnnuexpmnedbyi‘q (128)

27.7 Phase operator
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Similar] i
¥ or taking the complex conjugate of the above equation
W (% (1)[a]® (1)) = e (129
'© Now consid, iati ]
the expectation v:xl:; :}e{r::éagz n field to be in the coherent state and calculate

1/2
(F1E¥ @) =i (%) {(‘P(r)lal‘l‘(')) et
= (P)@¥ (1)) e*r) &

12
=i %DV) [uel(k F-01) _ e eilk r—ml)] @
hao \'/?
=-—2(m) |afsin(k-r—or+¢) & (130)
where
a=|oe? (131)

Thus l.he. cqherent state can be interpreted to represent a harmonic wave with phase
9. In a similar manner, we can calculate the expectation value £2. The result is

(€% (1) = (%) [4|u|’sin2 (k-r— ot +¢)+ 1] (132)
Finally, the uncertainty in £ would be given by (cf. Eq. 121);
(AL = (¥ (1) |22 (1) — (¥ (1) |1 W (1))?

_ ( hw

. ZEOV) (133)
Notice that the uncertainty A£ is independent of the amplitude |o); thus, greater
the intensity of the beam greater will be the proximity of the radiation field (cor-
responding to the coherent state) to the classical plane wave. Indeced when a laser
is operated much beyond the threshold, it generates a coherent state excitation of
a cavity mode.

27.7 The phase operator

In classical mechanics the displacement and momentum of a linear harmonic os-

cillator are given by
x=Ae"+Ae™?, 0=w (134)

and
p =mi = imwA [¢* — ™) (135)
where A has been assumed to be real. In quantum mechanics, we have [see Eqgs

30 and 31 of chapter 12]:

A o\\2

xz(i_(_n) [@+a) (136)
m

h 1/2
P-:l'mm(ma) [@-a (137
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1. Central Field Approximation:

Vi.

Vii.

viii.

The starting point for the calculation of energy of many electron atoms except the
light ones is the central field approximation.

In this procedure each electron is assumed to move in a spherically symmetric
potential V/(r) produced by the nucleus and all the remaining electrons.

The Hamiltonian in this central field approximation evidently commutes with the
angular momentum operator L; of each electron.

So the state of each indidual electron can be characterized by the quantum
numbers n, I, m; with spin orientation ms (+1/2 or -1/2)

The energy is independent of ml and ms at this stage because no interactions
involving the orientations of the Lj and S; (such as the spin —orbit interactions)
have been taken into account.

Thus for given n and | there are 2(21+1) available wave functions or orbital’s, all
having the same energy.

Each of them can accommodate no more than one electron in view of the Pauli
Exclusion Principle.

This set of states or orbital’s (for given n, ) is said to constitute a shell of the
atom, and if all these orbitals are occupied, the shell is said to be closed.

In the ground state of an atom, the electrons should arrange themselves in the
lowest available levels.

For instance, in an atom with 11 electrons (neutral sodium) the first three shells in
the above scheme would be completely filled and the last remaining electron
would go into a 3s state. This is summarized in the notation

(1s)* (25)° (2p)° 3s

This specifies what is called the electronic configuration of the atom.

n

1 2 3 4

0 0 1 0 1 2 0 1 2 3

Spectroscopic
Notation

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

Max no of
electrons

2 2 6 2 6 10 2 6 10 14




2. What is Central Field Approximation method for evaluation potential energy
function of many electron atoms?

I.  The starting point for the calculation of energy of many electron atoms except the light
ones is the central field approximation.

ii.  Inthis procedure each electron is assumed to move in a spherically symmetric potential

V(r) produced by the nucleus and all the remaining electrons.

Consider a helium atom which consists of a nucleus of charge +Ze and two electrons circulating

about the nucleus. The Hamiltonian of ground state helium atom is

H=K.E +P.E
ieH= -1 (v21v2)— ze2(L4+1) 4 &
ieH= —;— (V}+V3) - Ze? (14 )+ = oo 1
Py R E— 2
2 1TV2
2 2

PEWV)= -2 24 & 3

r1 r2 r12
Where

Z e? (rl + rl) is the interaction energy due to columbic attractive term.
1 2

2

:— is the interaction energy due to electrons mutual repulsive term.
12

If we extend the equation for N electron atom

h? Ze? e?
n (LR g2 I R
[ (-5 W )+Zl>rﬁ] Y= EY 4

rj

e This equation cannot be solved by the method of separation of variables due to the
presence of interaction terms.

e Moreover this equation as such can also not be solved by perturbation method.

e In such cases, we consider a modified field (central field) in which all the electrons
experience centrally symmetric field by superimposing the radial components of coulomb

2
interaction term ( - Zri) between the electrons and the nucleus. (coulomb field —

attractive field)



2
e The remaining interaction term Zi>% is the mutual repulsion term and may be treated
ij

as small perturbation term and the problem can be handled by the perturbation theory or

variation techniques.

2
Let the mutual repulsion term Zi>% be divided into two parts
ij
1. Y 8(ry) --—--—-—-—--- 5 (directed away from the nucleus central part) and
2
2. remainder X; Ry = Yisj— — XiS(ry) - 6
ij

e The first part weakens the coulomb potential when superimposed on the latter.
2
e Therefore the central potential is }}; [— Zri + S(r,-)].

e Itis often called the Screened coulomb Potential.
The total Hamiltonian is now expressed as H = Ho + H’ -------------- 7

where Ho is the Hamiltonian with central potential. i.e.,

Ho= 5[~ V2 + V(1] oo 8

Where V(r;) = — Zr%+ G o) — 9

H = YR, = Zi>ji_:_ 2iS(ry) e 10
:Zi>j:_i2j_ Zi[%'l' V(Ti)] """"""""""" 11

When in zero™ order approximation the interaction term H’ is negligibly small and left with only

the central field, hence this approximation method is called Central Field Approximation.
Two methods are commonly used for obtaining the central potential v(r). They are

1. Thormas - Fermi method :- this method is simple but less accurate

2. Self consistent method of Hartee :- more cumbersome



3. Find an expression for the electron density in Fermi — Thomas model and show that the

radius of the sphere enclosing a fixed fraction of all electrons is proportional to Z-13.

@ This model assumes that the central potential function V(r) is spherically symmetric and
is produced by the nucleus and the other entire electron except the one whose motion is
under consideration.

@ Here the potential V(r) is assumed to be slowly varying, slow enough to have number of
electrons in an electron wavelength.

@ This model assumes that the electrons are treated as a gas obeying Fermi —Dirac
statistics.

@ Many electrons are localized within a volume over which the potential is almost a
constant.

@ As electrons are treated as a gas of fermions, one can apply the concept of cells in phase
space to the states of individual electrons.

The volume of phase space occupied by electrons which have momentum less than p and are

in the volume dV is %n’p?’dV ------------ 1

. . .2 (4
The number of cells (states) corresponding to this volume is 3 (— np3dV) ------------ 2

The factor 2 is included to account for the two possible spin states.

Assuming that all these states are occupied, the number of electrons per unit volume n(r)

81'l'p3 _ p3 3
= g -mmmm—mmmmm—m-

3h3 3m2h
For the electrons not to escape from the nucleus, the maximum allowed kinetic energy at any

isgivenby n(r) =

distance r from the nucleus is —\V/(r)

pZ

That is o =T V(r) ---------e- 4
From eqns 3 and 4
3
[—2mV (1)]2
r) =2 - 5
n(r) 3m2h3

This equation is the integral form of the Thomas Fermi one;
It is possible to transform it into a differential form by using the Poisson equation, which links

the electrostatic potential V(r) to the density of charge p(r) =—e n(r) as V2V (r) = - e p(r) *



xHere, the Poisson equation is written in the rationalized M.K.S. unit system (Sl units) as

V2V(r) = - e p(r), rather than in the un rationalized Gaussian unit system where
V2V(r) = —4mep(r) — — — — — — 6
Since the nucleus is at the origin, the potential is spherically symmetric and therefore,
2 1d [ 2 dV ] ___________________
vV = r2 dr r dr !

With this value of V2V, eqn 7 reduces to
1d 12 dV] _
r2 dr

—4me?n(r) -------------mm--- 8

Substituting the value of n(r) fromeqn 5 ineqgn 8

2 [-2mV (1‘)]%

1d 2dV] _ Ap2 TZmV ()2
r2dr darl dme 3m2h3 9
)
When r —0 the leading term in the potential is due to the nucleus, so that V(r) — ze
Therefore it is convenient to introduce a function x(r) defined by
—Ze?
V(r) = Tx(r) and r = bx ------------- 10
Substituting the value of V(r) and rinegn 9
) 3
—Ze 2
1d d —2m——x(r)
1'_2d7'< 2 < xr )>>= —41132[3HT]____11
3 1 3
ARl | atemi @) Paw®)
rZr dr? 3nh3 rril2

dx _ adam’s 7%

= ———13
dr? 3n'h3r1/2

Now sub r = bx

d*y 4e3(2m)3/2 z25°
b?dx? 3mh3 (bx) /2




d*x ae3(2m)’2 2'2 52

= = - ——— 15
b*/2dx? 3mh3(x) /2
Z/ 2
Where b = 1(3_1:) 3h—2%————16
2\ 4 me? z/3
h? ) _ 0885ay
Subm = Qg - b= 21/3 17

With these substitutions

Therefore the result is

The boundary conditions are

(leatX=0)
x=0atx =00

Thus we have the following important results

i.  The radius of an atom is inversely proportional to the cube root of atomic number.

ii.  This model is applicable to atoms with large atomic number Z where the number of

electrons in a small volume is comparatively greater so that the statistical calculations

are valid.

iii.  Electronic charge density n(r) gives smooth charge variation over atomic dimensions

and does not involve the shell structure.

iv.  The form of potential energy function in this model is useful in the self- consistent

field calculations.



4. Show how the Hartree approximation can be used to solve for the wave functions

and energies of multi-electron atoms.

The Hartree Approximation

e The method for finding best possible one-electron wave functions that was published by

Douglas Hartree in 1948 and improved two years later by Vladimir Fock.
The Hartree method is used to approximate the wave function and the energy of a quantum
multi-electron system in a stationary state.
The Hartree approximation assumes that the multi-electron wave function can be expanded
as a product of single-electron wave functions (i.e., orbitals).

[W(ry,rp, .. 1p)) = Wy (r)W¥, (r2) ... Wy ()
This method ignores the effect of spin on the wave function.
The multi-electron Schrddinger equation is formulated and solved to determine the wave
functions and energies belonging to ground and excited states of the multi electron atom.
Also the charge densities at position r due to the remaining electrons except (i) is calculated.
The central field can be calculated from the nuclear potential and the wave functions of the
remaining electrons, by assuming that the charge density associated with an electron is (- e)

times the position probability density.

According to Hartee for a Z- electron system the wave function W is assumed to be

|W(ry, 1y, Ty ) = Wy ()W () ... Wy (1) ==--mmmme 1
i.  The Hamiltonian for a multi electron atom includes nucleus-electron attraction

terms with a general charge Z; e.g.

V4 Ze? 1
V _ r)= — e L —— 2
nucleus electron( 1) lri—R| ZR 4mey |ri—R|




where V (ri)is the potential in which the electron moves; this includes both the nuclear-electron
interaction and the mean field arising from the N-1 other electrons and |r; — R| is the distance
between the electron and the nucleus,

ii.  The Hamiltonian must also have terms for electron-electron repulsion.
Velectron—electron(rij) = Ty Tt 3

Where |r; — ;| is the distance between electron i and electron j.

So the proper multi- electron Hamiltonian can be

hZ
H(ryry, ...mq) = ~om. YiVE+YiVaee ) + TixjVee (1ry) ---mmm-mmv 4

Unfortunately, the electron-electron repulsion terms make it impossible to find an exact solution
to the Schrodinger equation for many-electron atoms. We smear the other electrons out into a

smooth negative charge density p (r) leading to a potential of the form (i.e) the total charge

density creates an extra mean potential
r
V2V(r) = _pn)
€0

In order to find the wave equation for it electron, we first find potential energy of it" electron
in the field of remaining (Z-1) electrons as follows
The term eW;'¥; = e|‘Pj(rj)|2represents the charge distribution (charge density) p(r) of j"

electron.

The potential due to j™ electron at the vicinity of i" electron is

According to Poisson equation the electrostatic potential - V(r) and the charge density — e

p(r) is related by the equation



p(r)
LAY,

1
——ViV(r)= -
p (r) ~

Therefore the potential due to all other electrons in the vicinity of i" electron is

|q'1(rl)| dt———6
41t EO o |l‘l - l‘ll

Finally the potential energy of the it electron in the field of all other electrons is

Velectron— electron( ) =

|®; (x; )|
\/ )= LA AT M
electron— electron( ATt €o - j |l‘ _ I‘

Finally we have the system of Hartree equations as

2

h2 Ze? 1 Wi(rj
V" im mem”dt

Tri—r

¥;(r) = Eip; () - 8

2m ameg |rj— R| ‘ i— j‘

The third term is the charge density associated with the j th electron.
e|®;(r;)|* will be known only when we solve eqn 11.
e Therefore one has to go in for an iterative procedure assuming an approximate form for
the w;‘s.
e The insertion of the refined wave function back into the equation leads to a better one.
e The process is continued until the wave functions are self consistent to a high degree of
accuracy.

e The potential thus obtained is called the self consistent potential.




5. Derive HARTEE - FOCK EQUATION
In the Hartee method, the many electron wave functions are simply a product of one -

electron wave functions.

e This is not acceptable when the particles are indistinguishable.

@ The Hartee Fock method incorporates the effect of exchange symmetry into the
formalism.

e In this theory, Fock used an antisymmetrized trial wave function for the variational
calculations.

@ The wave function including the spin is assumed to take the form of a slater determinant

of one — electron wave functions.

U1(X1) U1(X2) Ul(Xz)
1 |U,(X U,(X v U (X
l'p(xl,xz ...... xz) = 7 2(5 1) 2(5 2) . 2(5 Z) _____
Uz(Xl) UZ(XZ) UZ(XZ)
-1
Where X;, X, ...... represent the co-ordinates both spin and space.

The Hamiltonian of a system having Z interacting electrons is given as

h? 1 2
H= Yoo V24 V)| + S Bl S oo 2

i,
Rewriting the Hamiltonian of the interacting system

The Schrodinger equation to be solved is

[~ Z 02+ V) + FO)|O0) = EB(r) —emmmmrememmmmreeee 3

And the operator F has to be selected so as to minimize the total energy. Use of a single
determinant with these functions as the ground state wave function is known as Hartee — Fock
equation.

The choice of F in accordance with the variational principle is given by
(n|Flm) = X[(in|v]im) — (nilv|im})] --------------- 4

It may be noted here that the Hamiltonian is not affected by this choice of F, however the one-
electron functions u; change, Next let us proceed to get the explicit form of the Hartee — Fock
equation. Writing eqn 4 in the integral form, we have




Juh COF(rum ()dx = X [ uf (ep)ugs Gep)v(r 72 ) (e )ty () doxy doxy —
2 ff Un (xl)u: (xz)v(r1,rz)ui(Xl)um(xz)dxldxz ----------- 5

fu‘;kl ()F(r)uy, (x)dx = Zlfu‘;kl (XZ)[flul(xl)lz dx;|v(ry, r2)uy (x3) dx, —
i Juy ) up (1) w (x1) v(ryrp)doeg ] u; (x)dxg =---mmmmmmmv 6

We have interchanged x; and x, in the second integral which is possible as the value of the
definite integral does not depend on the variable of integration. Under the same rule, replacing
the variable x, by x and r, by r we get

Jun COF (M ()dx = X [ (O[S g ()1 v(ry, 1 )um (x)day] dax —
XiJ un GO uf (1) wm () v(ry, My () dxy] dxx -7

Jun COF(Muy (dx = X; [up GO uiGe)1? v(ry, Mug, (0)]dxy —
Juz GO ui Ger) um (xa) vy, Mg ()dxy Jdx -8

From the comparison of the two sides it follows that,

F(Mum ()dx = L [lui(e)1? v(ry, Mum (dag — X [ uf (1) wn Ger) v0ry, g () doxy -

As u(x) is the product of orbital part @(r) and a spin function ¥(r) , the integral implies a sum
over the two values of the spin variable. Carrying out the sum over the spin variable, we have

F(r)®m (Ndx = L; [10:(r) 12 v(ry, 1)@y (r)dry — X i J @i (r1) ¥ (r) v(11,7)@; (r)dry -

spini=spinm

Then egn 10 reduces to

F(r)8m (dx = 2|27 [10:(r) 12 v(ry, 1) B (1) — T2 [ 67 (1) Wi () vy, 78 ()l |

The Hartee — Fock equation (Eqn 3) now becomes

h? )
_% Vi + V(ri)q)m (T)

z/2 z/2

+2 ;f|®i(7'1)|2 v(ry, 7) 0o (r)dry — ;f B (1) Yo () v(ry, 1)@, (r)dry

=€Em Dm()

6. Residual Electrostatic Interaction:
i.  According to Hartree's self consistent field for calculating potentials, and to solve

Schrodinger equation, consider that if the system has N electrons and the Nth electron




Vi.

Vii.

viil.

experiences the electrostatic interaction from other electrons as a single entity which
helps us in considering it a central field

Ze?

The electrostatic potential energy H,; = Zi>f:_i2,- - i [ .
In reality the electrostatic interactions couple each electron to all others (as well as to the
nucleus).

This implies that an energy Eigen function will not consist of a single configuration, but
be a linear combination of wave functions belonging to different configurations.

However the averaged out potential energy functions Vi(ri) employed in the central field
approximation are expected to be the difference between H,; and V;(r;)

H, —V;(r;) = H,es the so called Residual Electrostatic Interaction

The residual electrostatic interaction energy is very small compared to electrostatic
potential energy.

The electronic configuration corresponding to Ers will also be small for any given
configuration E.

Thus for a given LS there is a multiplet of (2L +1) x (2S+1) states with energy EcL.
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7. ALKALI ATOM :-
(Li, Na, K, Rb, Cs, Fr)

I.  The ground state configuration of an alkali atom consists of a series of full shells followed by a

single S electron and so is 251/2.

ii.  Careful examination of the spectra of alkali metals shows that each member of some of the
series are closed doublets.

iii.  For example, sodium yellow line, corresponding to 3p— 3 s transition, is a close doublet with
separation of 6A°.

iv.  Further investigations show that only the S-terms are singlet, while all the other terms P, D, F
etc. are doublets.

V.  Such doublet structure in energy is observed for all the atoms possessing a single valence
electron i.e., in the outer most shell.

vi.  Spin is essentially a quantum phenomenon.

vii.  The spin of the electron is found to be % hand S2 = (s 4+ 1)k* where s :%, the quantum
number for spin.

8. Explanation of doublet structure of alkali atom:

The Hamiltonian for the lone electron of an alkali atom relative to the atomic core is given by,

2

Hy=——+V
0 2m+ (r)

Where, P? = momentum of the lone electron
V(r) = Potential.
r = Distance of the lone electron from the centre of the atomic core, i.e., nucleus.

Now considering the spin orbit interaction the total Hamiltonian is given by,

PZ
H=—+V(@)+ H*°
2m

Where H*~° is the spin orbit interaction term

An electron with orbital angular momentum | and spin s will behave a total angular momentum
J=1+s

Which gives the quantum numbers for jas j=1+s ----—--j=1-s.

. . 1 1
Since for a single electron S = Shor=—-h.

Thereforej=l+2l 0rj=l—21

14
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1
forl=0,j=§only.

The coupling of spin with orbital angular momentum gives rise to the fine structure splitting of spectral
lines and it gives to the doublet structure of alkali spectra.

This interaction is called spin orbit interaction.

The existence of electron spin and the doublet structure comes as a natural consequence of relativistic
theory.

Now the spin orbit term can be considered as perturbation term. The contribution of the spin orbit term
can be calculated by considering its expectation value.

Consider the first order correction,
AE = (V|H™°|¥)
Where ¥ is the effective wave function of the one particle system.

In an atom the total angular momentum j is always conserved even if individual | and s may not be
conserved. Hence we can work in a representation or system where H5~° is diagonal. Also we choose
n, l; m;) representation, (where individual [ and s combined to form the conserved quantity j)

Thus

AE = <an [ HS0

l111’1 lj‘mj>

AE = (llUn llf(r)lllun l> <lpl sj’mj|l- Sllpl sj,m]->

AE = Up {L.s)
me* e? zZ* Z4
where Uy = (Yn €M) ¥Pn ) = 2 E 1 = Ry a 1
L S () n3l(l+5)

4 2
Where R,, = % the Rydberg constant and a = :._c the fine structure constant.

To calculate the angular term L. s

1
(L.sy ==[j?—1% —s?]
2
1 P2 2 2
<lplsj‘mj|l-s|q]lsj'mj>:(l-5>: E[] — 1% =57

= %j(j+1)— I(l+1)—s(s+1)

15
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: 1 1., 3
Slnces=2—;(l.s)=[5](1+1)—l(l+1)—z]
thenforagivenl,j=l+% andj=l—%
=41 — (2 1 3) = S I RN LOTE S T N B
For j=1+3; (Lsy= [2(1+)(1+3) - 10+ -3 =32 +3+31+3-12-1-]
l
(l.S)—E
Similarly for j =1 —% we have
1
(l.S>: —E (l+1)

Thus the energy levels are given as

E=Eg+E = Eo+Upn;

1 l
E; (forj=l+§)= Eo + Uy

7
1 [+1
By (forj=1-3)= Eo— Un—;

Therefore the separation is given by AE = E; — E, = Uy, (l + %)

Thus the splitting of energy levels i.e., separation between the two levels for each value of I is

Uni (l + %) This is the so called fine structure of spectral lines for spin orbit interaction of energy
levels.

9. COUPLING SCHEMES

Total angular momentum :

The addition of angular momentum for a many electron system is much more involved than that
of one electron system. When more than one electron contributes orbital and spin angular momentum to
the total angular momentum J of an atom then J is the vector sum of these individual momentums.

There are two types of couplings

1. L-S coupling or Russel — Saunders coupling

2. j-j coupling
L-S coupling or Russel — Saunders coupling

i.  This is also called as normal coupling as this occurs most frequently.

ii.  Orbital angular momentum L; of all the electrons are coupled together into a single resultant L.

16
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iii.  Similarly the spin angular momentum S; is also coupled together into another single resultant S.
iv.  The momentum L and S then interact via the spin-orbit effect to form the total angular
momentum J.
v.  This scheme is called LS coupling
Thus L = L1+L2+L3+----
S= S1+S2+S3+----
ThenJ = L+S
vi.  These are simply the integers or half integers.
vii.  his included while writing the magnitude of angular momentum vectors
viii.  when two orbital angular momentum Iy and I> combine, then allowed values of L are
L=(UL+L)+UL+L -1 ... L =1
Similarly for a given values of L and S the allowed values of J are
J=L+S+L+S—-1)...|L—-S]
For L>S, there are 2S+1values of J, and for L<S, there are 2L+1 values of J.
The value 25+1 is called the multiplicity of the state.
For a two electron system (S, = S, = 1/,)
If the spins are ant parallel then S = 0, or parallel then S=1
When S= 0 we have J=2S+1=1 state. Such states are referred as singlet states.
When S=1, we have J =2S+1 = 3 states. Such states are referred as triplet states.
Often singlet and triplet states are grouped separately.
Usually the state of a L-S coupling is represented as n***L,
For example if S=1/2, L=1,5=3/2,1/2 then the corresponding state of LS coupling will be *p3,,, *py/,
(where I stands for s,p,d,f . for | =1, p state). It may be read as doublet p three halves, doublet p halves.
J-J coupling:
| and s vectors for each separate electron combine to form a separate J and all the J vectors are then
vectorially added to form J
Thus for each active electron J; = [, + 51,/ =, + s, etc.,and ] = 1+, + )3+ =27

This coupling scheme is known as J-J coupling which is distinctly different from L-S coupling scheme.

10. Hydrogen atom — Covalent Bond: Heitler London Theory

17



Prepared by Dr. V.Shanthibama, Asst Prof of physics, GACW, Salem -8

<0
—E
-
s
> =
i
(@)
2 S
Zrn
m &
ed®)
> X0
(@)




Prepared by Dr. V.Shanthibama, Asst Prof of physics, GACW, Salem -8

19



Prepared by Dr. V.Shanthibama, Asst Prof of physics, GACW, Salem -8

)
m
o
=
=
o
—'
m
o~
o
o
o




Prepared by Dr. V.Shanthibama, Asst Prof of physics, GACW, Salem -8

P9
m
=)
A
z
)
—-{
m
o
il
o
o




UNIT V : Relativistic Wave equation The Klein — Gordon Equation — Charge and current
densities in four vector — KG equation in electromagnetic field — The Dirac relativistic
equation: The Dirac matrices — Free particle solutions — Meaning of negative energy states—
Electromagnetic potential: magnetic moment of the electron — Existence of electron spin —
Spin orbit energy
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). If the wavefunction has m0fe
required t0 describe translatory

correct non-relativistic expression as

-(22)

= 2
sed as E = E’' + mc ‘.mc2 being

23)
(24)

.(25)
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Relar
s 'mc y 2
ol )l )
i [ T () LA dy ! '
2mc'2 [f ot J- VA (“1 T3 )] oy

hyr
2["’ (r-f)(—fhﬂ"“}-i-wm(' DLJJ_'_WMW

ot

495

Il

]

ch'

ll

— VY g ince £ = [/ g
3 T (Since £* = » elgen-value of H being real)

‘l,l*wl.

.(28)
bt - (Since non-relativistic o r 2
which is correct non-relativistic expression for probability densiry auvisticenergy E* < < mc”)

122. KLEIN-GORDAN EQUATION IN ELECTROMAGNETIC FIELD.

a—
An electromagnetic field can be uniquely represented by a vector potential A and a scalar potential ¢.

These pownuals form a four vector A, whose components are A;, Ay, A; and A4 = i and transform like
four v
momenmm.energy our vector p, having components p,, py, p, Py = ?E Therefore the potentials A and ¢
d be included in Klein Gordan equation with momentum and energy.
‘ Ife li the charge on the particle, then in analogy with non-relativistic expression p and £ are replaced
Léq o ._‘ andE — ed respectively i.e, :

T PR
|| c "'(29)
E—>E-ep

J:al,an\rlstlc expression between momentum and energy of a particlé' of charge e in
I_ﬁeld becomes.

(F - qu)2 =c (p - %}2+mzc4
2 4

: (E - )’ = (cp — eA)’ + m® .(30)
ors Eand p by i h %and—ih V respectively
B na% B eVl ity L ea? e -(31)
- 2
) A R 2 00, e 0O) 0, 22
V— —h atz ieh 3!‘" ’eMa’+e¢ v

e Oy ey X _2ieng I+ 2o’y
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- : . 2
'2T262V2\|1 eV (Aw) + iechA - Vy ;: Az\v
= il :
! hgczvz + fehc v - A+t 2;(.’“8 A;nvl+ €“A%) v.
sy 1 a ic .
[ s Klein-Gordan equation for a P e of charge | )

and (- iteV — eA) ¥

Substituting these values in (31
electromagnetic field takes the form. :l
]

2 az . a 17 'Q- ‘2 1
[—h ?"“’ﬂﬁ?—zuhq]al-quj : 242 4w v
: 2
V+e (32

ieticA ° ) .

== 522V + ietic V - A + 2ieBc _relativistic equation, let us m
b equation (32) and similar 1o ke the
To find connection between é _

W 2
. ituti . mc> as the rest energy )
following substitution taking ) 2
-_— ’ 4
y(r = y'(r 1) ¢

2
NV _ [E)\g’ b imc” v’ J i imc t/Tl_

ot b
2 aa':t 2 2 v’ mZ (.‘4 Zlies imr:ztfﬁ
P v’ imc- OV . T—
- '_!g— ~nh O hz

i i ar* ot
~ Substituting these values in (32), we gel
D I T D a 2 3 2
e a2 o0 . i N _ oamc” e + 2
_hz_a__y.’_,.+2imczﬁ_aal+”lzc4wl_teh T'_)?w —-2[{,“¢ at ¢W e¢‘lr
‘ 5 ;
ot :

iy

e imfzr/ﬁ
7] i 2 _4] ’ e—- imczz/‘ﬁ
E[—ﬁ262V2+ieﬁcV-A+2ieﬁc'A-V+eA +mc] VY
. { | LK
—ime /0 2 4 y * on both sides and dividing throughout by 2,2
| 1

L.
. ~ Concelling out the common factor ¢
L .','.'*ﬁt?ﬁg,eg_s,_ e ! 3.2
i e — 2 2 2
e Pk ‘-2—'_!716‘2 6:2 o 2mc ot ’”:' 2me s
||‘. A "'= _;-.;J-,l- E:. Vz o ,eﬁ - A 4 ,eﬁ A ! V - €A2 '
g lﬁw ; |7 2m 2mc nc I v
:—;\L:"F-!,k j . 5 S 5 5
3'. ~ Keepding mind that rest energy /nc > > non-relativistic cnergy £ and mc™ > > e, we may negleg
U e R ) e .
the terms of order 1/mc* as compared to E " and e and rearranging. : o
b it | 2 : : 2.2
ieh e A
;h§£=_ﬁ_92+_—’eﬁv.A+——A-V+ ,+e¢-‘\p’_
ot 2m 2me me med |

imply non-relativistic Schroedinger equation for a particle of charge e in eiectromagnelc
Klein-Gordan equation in electromagnetic field reduces to correct non-relativistic limit with

)
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observed fine struc s
cture of the hydrogen atom. Therefore the Klein-Gordan particle cannot be an electron.

The spin is absent in this soluti
this solution. It is valid for spin zero particle orbiting about a nucleus.

12.4. DIRAC’S RELATIVISTIC EQUATION :

\ Gordan equation on the

In 1962, Dir . :
ac formulated an equation to avoid the difficulties arising in Kleir
n H and hence

basis of requirements e i
g r. of Lorentz invariance which demand that an equation which is linéar i
In £ S near i YN :

in p. This is because both E and p enter linearly in four momenturn pu given by

ot}

Dirac approached the problem of finding a relativistic wave equation from
A
T, AL a't'" A1)

et i 1 5
Linearization of Hamiltonian H : Dirac took a bolder approach by assuming that the Hamiltonian H

‘ is linear in ener, . g :
| 1S ergy and momentum. The simplest linearized Hamiltonian for a free particle is
2 . 42)

i
H=c (Y> Pt ﬂ mc
2 =
Here B and th= components of &are yet undetermined except that we postulate them to be independent
be independent of r and t,

of p- 'I'lt::s_in{plit:;' that they commute with r. We can also require that they must

§lnce otherwise (e energy of a particle in empty space would depend on the position of the particle and the

instant of observation. Thus they also commute with p. :
Substituting H from (2) in (1), we get the wave equation

fantc ‘l"iu‘,[r (ca)op-{-ﬂmcz) y(r,1n = ifi a';l! ag:'q 12 .(3)

 Substituting operator for p vizp — — i 1i V, we obtain

[ (-ihV) + Prcy (r,0) = ith ﬂ%fﬁl

( O e Ve Bm(.‘2] v = 0. (8)

ot

indicated if this equation is to describe 2 free particle, there can be no term in the
‘depend upon the space and time coordinates. Consequently o’and B are independent of
, commute with all of them. This does not necessarily mean that o’and P are numbers,

mute with each other.

.aga;‘jn”E for it (9/9f) and p for —ifi V, equation (11) may be expressed as

- (E-c@p-PBm) v =0 .(5)
1by (E + cal-p+ B‘mc"), from left we get

Pmcz) (E - co+ p —'Bmcz) =08

@ p+ prc)) v =0

Al @-pp-m BT RV =0 ©)

- lfwu Dyl Pt;'lzn'[{iﬁ;ﬁg'_ jpy “"'l.kpz- .
| Pyt 0zpy) B
o
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502 ,)] y=0
o p
E o px + 0Py Y Ay
o B(;x_’_ (alay-i-ayax) pxpy+(ayaz+uza,) p)'pz :
or [Ez-—c‘ {axPx "'a)'p)’ s At i32"12‘,_.4 ._mc {(ox B + ﬁax)i’x‘*(%ﬂﬂu’) |

"'(azax"'axa;r) PzPX} +(0.15+ g

‘(k

K]em-Gordan CqUauon f

bs it (9/01) forE and + in'Vfor P are 'mgl'fd is
tions / iF

where the substitution [Ez_c (p e +pz)_mc » :
Comparing equations (8) and (9) we (z)bldln
2 1A 57y

(112__(1),' —sz =P = 0; (aza,+a,a,)=0 i

pod 0 Oy + Oy O = 0(("3%;?)0_’_)0 (a78+ﬁaz)=0
aﬁ+Bax_0 8 4 rties :
That is the four quntmes 0y Oy O and p have the following prope

(i) their squares are unity and ;
irs.
(ii) They anticommute with one another in pat
"~ Since &rand B anticommute rather than commute with each other, they connot be numbers, I
ﬂ'le ti f thi be expressed in terms of matrices and it is convenient o find 4 Mt
quantities of this type can be
 representation of them.

Matrices for @and B :
- The squares of all the four matrices are unity; SO that their eigen-values are +1 and - |, Lety
aﬂmmtlly choose B as the matrix that is to be diagonal and we rearrange its rows and columns so that all g

_+ 1 eigen values are grouped together in the matrix of rank n and all the — 1 eigen values are grouy]
tog:tllerm a matrix of rank m.

Tbe matrix B can be expressed as
{16

(L]
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ich i i i have
which is a unit matrix and therefore commutes rather than anticommutes with every O. Hence can not

fourth 2 X 2 matrix which satisf; : 3 3 how that the Dirac’
Matrices must be even-dimens iOnc:zs both properties of Dirac Matrices. Now we s

Let us choose a representatioin in which B is diagonal N x N matrix i.e.

by 0
ﬁ = { bj
0 by

2 2
AsP” = 1, b; =landb,~=il(i=l,2.,...N)

.(13)

Also since Bz = akz =1 (k=uxy,2):;det oy ordetp # 0.
This implies that matrices o (k = »x, Y, z) and B has an inverse
Since P anticommutes with each component of @, we have
"' O.'kB-{-ﬂ(Ik:O(k:Xv)’-z)
~ This relation may be expressed as

- oy p

-1
- oy oy P

B oy
ey 2 k
bl g o P oy
=«‘3'utﬁ¥‘ﬂil' oy = 1; we have

.(14)

[ = R e

o' Boy =-B
»m«lj‘
o

ing trace of both sides, we get !
.. =
CSUCESRI Trace (0@ Poy) = — Trace B |
awm_ R Trace (0y o' B) = — Trace P [Since Trace (ABC) = Trace ((|:AB)]
a4 mmi L % A Trace (B) = — Trace (B) (Since o 0% =D
; givi s " 2 (Trace P) =or Trace (B) = 0 :
y 0.~ ° 2(1S)
7 Trace (B) = Trace (o) = 0
shows that the trace éfeaph of the matrices O and B must be zefa 7
&Ahebr-fl e + 1 and the rest s of b;’s are — lie.
4 ey ] .::‘-“‘.hia by= =b =1

A
i <

g »
X T

J‘b‘ﬁq:z:i»& =‘bN-='-1 _ . -
Y '

"
ol

(16)
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| | - Aseigen values of all the four matrices

15'to be diagonal and we arrange its rows and columns $O

are + 1 and

(IkB + Bak= 0.

—1.Letus arbitrarily choose P as the ma‘nxw
that all the + 1 eigen values are gouped

Advanced Quantyy, Mec

a

! and all the - 1 eigen values are grouped together in a matrix as - i
‘ il 0 (N
(f B=1o —1] 3 iy
- l 0
i 0 1 0 g
| = 2 0 "'(18 )
¥ Bi=\I%o 0 (1) * b)
o 0 atast
lr L As B anticommutes with each component of & we have

the jl element of which is (o)t (B + By) = 0.
Here B and B are the two eigen values of B, which are arrang

ed in accordance witﬁ €quatiop (13

i > IfB; = B then (Bj + B) # 0 and so (o) = 0 whereas if f; and Py have dopposite signs, “\trll

::]g?j yt Bj + B = 0; 50 (o) need not be zero. Therefore the matrix for oy may be expressed as

[(!‘;\ L, ‘ LT 0 Oyl

i e [ 2 ; g

,; ’; where 0,1 has n rows and m columns and . has m rows and n columns. Since the square of (19) i auy
i ;i! \ -matrix, we note that

- ouoa = o
!t 0Ly Oy = 1 (20h)

- of (20b) has m rows and n columns.

The unit matrix appearing on R.H.S. of (20) has n rows and m columns while the unit matrix on R.m.

15

a But no two matrices exist that satisfy (20a) and (20b) simultaneoulsy if m # n. Therefore we mg
have m = n = 2 for 4 x 4 matrices. It is apparent that o and @, can be put in a form similar to (19),

 Using Pauli spin matrices o, o, and 6 and choosing
Ol = Oy = Oy ; then

Scanned with CamScanner
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wwma
[ 1 o ' o o
= I — — --'-— R,
0 oI -1 0
; " L0 o ! o -l 4
These 4 X 4 matrices are evidently Hermitian and in abbreviate form may be expressed & .
B = [ I 0  — 0 ? "—-)
: v 0 -IJ'“‘[E’ o]
: r,,;hdunﬂﬂulmﬂm: with (wo rows and (wo columns he Dirac
w“wﬂV'l : If the Dirac operators are 10 involve 4 by 4 matnces. then |
q’,‘amhﬂ"m‘f"“mﬂmw that is Dirac w function. must have the form
v
rv; | (23)
g . L4
[ e ) - ,pundlﬂx 1o
hore each of four companents is an ordinary function of 1, y, z and 1 Then w* or ¥'s cOae
V=Iivi.¥v:. ¥u. W
dumm;vuh(dkwmdum function (25)
VY =Vivi+tHiva+ i + Vawu .
Two Dirsc y's Wy and Wy are said 1o be orthogonal (0 each other «f 2
IF)M d@t =0 | "21,
— ol
this 15, 1f Iﬁllﬂl*?u'm*awhu*wwmd"o -
. m“WﬂlMMDamMMMmuHumnﬁdm
the equation ay
S Hy = in ¥
"t ——a dy,/ar
s m*'ﬁ Tl . A/t
l'-_,— . Rt I ' } % -‘."~ " awa‘
B % B
-k : '- Ve dyy/d:

1

B
o+ Bmc) v = Ey

p G 3r

[ -
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s w e e O ‘
' J s e“*w L Q - ar o

ngvh&wm.« the Four SIMUITARRONS SQUAIONS

(hi"’\‘v1+mv\+t(r\ W)W‘EV11
J_h b (m’)w+«nw+eq».+ iny) W = Ew, : l»'n_;,'
“im t-w“‘\vwmw*eon*w‘n'iﬂ -
- (—m*’\w+¢ﬁw+v(p\+h)v|-l'¥a ,
-ﬁf NMW&WN l
"ﬂr (E-nﬁv\-q»,“—c(m—ww‘o} j
R ai (E‘Wa)vg-t‘(h*-ww*cngA"o_ i !’
3 E+mH - -cr-y V=0 "%
"‘r E+m)w-cripwnrmn=0 ,

22T anp,by- naimmdgu M.

R G—nc')wi-iac%!:f—-n‘nc[%—i%)w-l)} Ay,
_.a,v G-m’)“+c‘nc 33_ i%)“—ihc%to -';ﬂlu
) s (E+ma)h‘*‘m __V_l_ x‘he(‘a_"'"a—)“.o ‘ ”.“
g 92 qx o
RN (E-c-nc’)w-i-ihc[-%-ri%]v,-—mca—a?-o‘
LO’MMMW%%Q&B“CQNMM :

b @- n)(a’ O=B.C+id.BxC
auum
1 e ?] ; oAl 3

y o B 20T A Wy A &y NAS .

. Vis 1 = oy ) LUl 4"?‘&; ‘ .
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Similarty if we choose the negative square roo!
E. =~ (¢

llfz
zpzbﬂl £

,u4=0

| fU’x_:_ﬂz’_)_“J

-'RE.--::.. E. - m 45)1
—(p: "‘20.1‘4
—— :

I\

23 E. - mc A e TP g
Each of these solutions can be normalised by muIUplymg itby Nin sense
ol Lol e
| _:I .I l|'l|+u2‘u*2+u3 ]l';‘!'lt_g
g ép: & s + pr) —1
| — ’_______————'—A—__
_ Hz 1+0+ 'mc3)2+(E++mc2)1
(Es 1

EB!SITYMDCURREHTDENSH'Y
\'-h!luﬂnnnxequamnmdstodecmtpmbablhwdenmy J
ac equatic ﬁraﬁeepamdeus

'--f'—!"-r Bmcl v =0.

E 2nd p arc operators given by
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mmﬁmvﬁmh "
» r.N « v v
thﬂ)‘u[.‘h‘ T::‘flﬂf‘)tr ,’Q' (4
the Curre .
; .“.'gh(lynf M‘k.a“mm ™ dennay CAPremcm books move plasssble of we mobe ¢ a
int
a' - l‘ "] - I'l P &.-’ & 5"“:‘ ' -
= 3 o
@ " - (%
m*m.ho‘mm . |
ot 1 clien arbuted 10 Zitterbue e - of the velocity operssor (m the esual sonse) are o8 This

, ESng and -
ﬂ‘m Whu"m ©n dl::::‘:-‘“’ by escorumaly prscaple A very peecise
. Tom momentum o the relativity theory ) reguires
#mm that the MY i, s & . shghtly dafferemt mes Sach accurate
”‘.m becosse Possible and la;u: Particie o complctely ushmown, 3o that very lage

¥4 - i i
TN Mats rengh In a2 ngorows wase (5) s aot guale

vebo iy | Tk i lm
7 A ¥ farve b Bx efemed pev i s -
o Fobdy- Wouthurysee ransfonmat. e i

127, ELECTROMAGNETIC POTENTIALS | MAGNETIC MOMENT OF THE ELECTRON.

.b wder 10 introduce L ES——
M"““m: (L
pop-t2

e £ F-co
on the partecke

Y mNadx Ox wuadd Chanpos A and & we

P 2 cp~eA

(B ~cB p-Ppmyy=o

--0-t-n-cm-o~‘lv-° X
c B CpTMon, i<

g- a-inV

ot

=
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Nowreplacelldebothb)’(‘-‘P"A)m°2+‘5* (cp“":‘) ’;(Z;"eﬂu)
@- cp - ¢ AN = (0 Ay = - ce (AXF o kel -
But (cp—eM X (I’XA)]‘”,AxpV P )
by g% m.* Ax" Vv/+—Vx(A\v) i
3
sAx“’V‘P""(vaA*'V\pr) .
[Smcccurl(‘l’A) =y curl A + g
=|7 VXA
Awi-(- )V
-AX“V“’+H(VVXA 1 K,
= vV x A N
-VxA ~ih 3
. Axp-q-pXA !G:
Usmglhlsmsult,equanon(S)takesmcform ce (- inv x A):iecthA 1
(cp—eA)X(cp—fA)=‘ 1
V x A = B (Magnetic field) |
ButV X ™ (Cp—eA)X(CP_EA) jech B 4“
Hence tion (4) gives
equa - (cp~€A)] —(cp-eA) +i6” - iechB
_(Cp_eA) _ehcG” - B 1
The last two operators I in equation (2) can be SImpllﬁed as follc;iw-S- L |
—(E-etp)a (cp—eA)+0t (CP—EA)(
= e (EA - AE) +ced @p— P9
—e&"-m-a—-?-+cea iive
a -
[SmccE—thg- and p--Vandthen EA = AE=0ih =3 ¢p - p¢_lm
10A
-—zehca-( -—*a—' V¢]
= —jetic- E -
: : 1 A |
Since electric field, E = - ~ =--1
inaa
Now subshtutmg the values from (8) and (9) in equatmn (2), we get 4

[(E— ¢¢) - [(cp - GAX;A‘C . B] - mzc4 Ziehic - E]\F=-~"0 ;

-r-,eﬁ)._-_ mq + ehc
 are precisely the same as in relanwsuc wave &

be underst
: I:;yktenns may ﬁf
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E—E + m’ and E‘cc-r:_;Q(-c -
(E-—:‘,z.(z'.g’-.‘,} f .

--zr‘[log—-—;-’r
-

. -

‘_:‘,‘[l,?_Lél:x_‘ﬂ}_.:“c’zw,_“,‘-
-~
& (£~ ) -~ a'c" = 2mc” (B - @) an
Substituting thas in (10). we obtaun
a.r"g‘-gﬂ-u’—rm:vrlc 8"'-.-4.'&’.[1,;0
' : ] ¢ A L S “n ;
o ".(ii'.. ct’-zﬁ'a’-.vﬁg.tj' {(12)
Now Schroodmger equation fod s lee parte b o
3
s &
i .'.-' '
In electromagnetsc fhekd o ke e T
u:-cosv-',' ,,.'* v
- ¢ ;
-« tv-ic.. Z;L' "A :' iA1%
Comparing (12) and (13) we noss dus

E" = E - i} d/én
. m.d\-—m“u-ml-‘lmmml-yh
rated | POPICRONE Suagrin ot and et coetaseng B o represess B clecrwdd emerpy
R i C emeTEY = - B where [ o e magnetx moment Homce o8 compuring the thrd
saing B) ia (12) wid magaeta cnergy ¢ Aproson we gt

e, 4 AN A1)

, p— -

‘b'-i- W ¥ r 2ne

e %g;-n-udhwmh-

A

> .‘rﬁsﬁ

IP - - 1 'l
R PO TR
L
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s14 o
n. Let us examine this for x-componeny o 1 4

commutes with Hamiltonian H is a constant of motio
viz,

ity ) = e @ p + B’ + VO
Bmc” + V(r)]

[Lx." (o px + @ypy + @GPl ¥
Bmc’] + Ly V
= Lo caepd + [Lnctp) + (anwi je"'*‘ ™)

" B"l L, commutes with energy quantity in / except for py, " ,}
| v i
[Ly c 0y P = (Lo ﬂmc"] (Lo @) 1
B ] . Therefore. we ge[
‘n j‘_:’_-‘ = [L e uyp)] + [L_p (A a!p:]

% | But [Lncaypyl = €Oy (Lo ) y
'l =coy [VP;"ZP)'-P)] ‘il
= ca, {(bpapy] = RPw Ry '
= ¢ Oy {b pyl p: - Yeupyl - 0‘ ]

= cay [ihp = 0 }=cay itp, '1" 7
Similarly [Lyc O py) = ¢t (= ifipy) g
Therefore equation (5) yeilds. e
g i -‘% =cay (iip) + ca, (= ih py =
A e
T = —ifc (0 py = Oypy) .
: ) Ty x 0

le 'd—;'—atOOrL:#constant

: chce in Dirac’s theory the x-component of orbital angular momentum of an clecm
~ central electrostatic field is not a constant of motion. In other words orbital angulr m
Qmﬁﬁlme with H. However we expect on physical grounds that it is posiible to define a t
- mome Miracommntmacemralﬁeldoffomc msmeansthawemustﬁudanolhl
ommutator of its x-component with H is equal and opposite of the right hand side of
' opumu-andLnsmenaconsmntofmononmdmbeinmpreteduw

toseetha:medaimdopemoris;ulﬁphofa*mw
5"' a =

L' v -—\E%-.‘ i
.
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But 5.’ co A R
i e T every quam;lsxin:l::;? * %P + Pmc’ + V() = (7 "
¥ 3 equatj ~
v B - ch =[ Ty 0 ] l‘l““l(l)on cx.cmla’a’nd o,
0 0 .
0 Oy [0 -I]—[() _l][%‘ o'x]
o « i D s ] i
S =[%’ 0][0 a, 2k o, 0
s x
= 0 i Ox 0] [Ux 0][ 0‘ 0,‘
= 2 Oy 2
3 7 0'; 0 % 2 Ox =0
Hence equation (7) gives % 0 J
P - ‘.',-rjj : ih “igil = [g.’
= ,_‘g ¥ % dt = [G.ta C(x':\' p". + (:0.‘. pZ]'
R = [0, coyp + [0), coyp,l. -A8)
s
= G n ;
.,ﬁ?]-oxay_ayo;= Oy 0][0 oy]_ 0 c,“ g, 0
t0 Oy Sy 0 Oy 0 | 0 "O
- 0 0';0'}, A O —016:'-
- Ox G}' 0 = 0,0y 0
= -0 iUz 3 0 -icz
L '62 0 —;Gz 0 ]
=2ia,
: [Gx'-, Gz] = = 2 !‘ a)».
1 (8) gives
y T : :
N bas R !31!'5 e fRiely oG 2P
S ol = 2ic(oypy — Qyp,). ' ' ~£h
L 3 L10)

,g:) FHdie (cpy = %P2
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| =Y »
I i,.‘“ﬂ("nv.—m‘-n 77 depwi
Using the identity
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